March  2009, 2(1): 231-250. doi: 10.3934/krm.2009.2.231

Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics

1. 

Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy

2. 

Université de Lyon, UL1, INSAL, ECL, CNRS, UMR5208, Institut Camille Jordan, 43 boulevard 11 novembre 1918, F-69622 Villeurbanne cedex, France

Received  November 2008 Revised  December 2008 Published  January 2009

In this paper we present a new semilagrangian scheme for the numerical solution of the BGK model of rarefied gas dynamics, in a domain with moving boundaries, in view of applications to Micro Electro Mechanical Systems (MEMS). The source term is treated implicitly, which makes the scheme Asymptotic Preserving in the limit of small Knudsen number. Because of its Lagrangian nature, no stability restriction is posed on the CFL number, which is determined only by accuracy requirements. The method is tested on a one dimensional piston problem. The solution for small Knudsen number is compared with the results obtained by the numerical solution of the Euler equation of gas dynamics.
Citation: Giovanni Russo, Francis Filbet. Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinetic & Related Models, 2009, 2 (1) : 231-250. doi: 10.3934/krm.2009.2.231
[1]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[2]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks & Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

[3]

Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065

[4]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[5]

Nicolas Crouseilles, Giacomo Dimarco, Mohammed Lemou. Asymptotic preserving and time diminishing schemes for rarefied gas dynamic. Kinetic & Related Models, 2017, 10 (3) : 643-668. doi: 10.3934/krm.2017026

[6]

Asif Yokus, Mehmet Yavuz. Novel comparison of numerical and analytical methods for fractional Burger–Fisher equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2591-2606. doi: 10.3934/dcdss.2020258

[7]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic & Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[8]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[9]

Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077

[10]

Xiaobing Feng, Shu Ma. Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021071

[11]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[12]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[13]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[14]

Abdon Atangana, José Francisco Gómez-Aguilar, Jordan Y. Hristov, Kolade M. Owolabi. Preface on "New trends of numerical and analytical methods". Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : i-ii. doi: 10.3934/dcdss.20203i

[15]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[16]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[17]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012

[18]

Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471

[19]

Alexander V. Bobylev, Sergey V. Meleshko. On group symmetries of the hydrodynamic equations for rarefied gas. Kinetic & Related Models, 2021, 14 (3) : 469-482. doi: 10.3934/krm.2021012

[20]

Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]