September  2009, 2(3): 403-424. doi: 10.3934/krm.2009.2.403

Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation


Institut de Mathématiques de Toulouse, Université de Toulouse and CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 9, France


Laboratoire de Modélisation et Simulation Numérique dans les Sciences de l'INgénieurs, Ecole Nationale d'Ingénieurs de Tunis, BP 37, Campus Universitaire, Le Belvédère, 1002, Tunis, Tunisia

Received  June 2009 Revised  June 2009 Published  July 2009

In a previous work [J. of Hyperbolic Diff. Eq. 4, pp. 679-704 (2007)], the high field asymptotics of the fermionic Boltzmann equation has been proven to lead to a nonlinear conservation law for the particle density. Under symmetry conditions on the collission cross section, the nonlinear limiting flux is parallel to the force field. In the present work, we investigate the orthogonal direction to the electric field, and prove after a suitable rescaling that the behaviour is governed by the original conservation law with an additional nonlinear diffusion in the orthogonal (to the force field) direction. The main tool used in the convergence proof is a new estimate for the dissipation of the family of entropies introduced in the above cited work. While the entropy dissipation is usually estimated by quantities of the type dist $(f, F_{eq})$ representing the distance of the distribution function to the equilibrium set, the new estimate involves a quantity of the form $\int$ dist $(f, F_{eq}(\u)) d\mu(\u)$, where the macroscopic equilibria depend on a velocity variable $\u$ and $\mu$ is a probability measure. This estimate allows to control high velocities, pass to the limit in the diffusion current and shows the convergence to the entropy solution of the limiting equation.
Citation: Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic & Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052


Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033


Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304


Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009


Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017


Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237


Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018


Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701


Liming Ling. The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1975-2010. doi: 10.3934/dcdss.2016081


Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783


Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479


N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647


Asim Aziz, Wasim Jamshed, Yasir Ali, Moniba Shams. Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2667-2690. doi: 10.3934/dcdss.2020142


José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301


Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226


François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275


Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395


Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89


Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186


Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

2020 Impact Factor: 1.432


  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]