Citation: |
[1] |
A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).doi: 10.1137/S0036139997332099. |
[2] |
P. Bastian and B. Rivière, Superconvergence and H(div)-projection for discontinuous Galerkin methods, Int. J. Numer. Meth. Fluids., 42 (2003), 1043-1057.doi: 10.1002/fld.562. |
[3] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 2006, 32 pp. (electronic). |
[4] |
M. Brunnermeier, "Asset Pricing under Asymmetric Information: Bubbles, Crashes, Technical Analysis and Herding," Oxford University Press, Oxford, 2001. |
[5] |
M. Burger, Y. Dolak-Struss and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), 1-28. |
[6] |
M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson-Nernst planck equations for ion flux through confined geometries, preprint, 2010. |
[7] |
C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507-525. |
[8] |
J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.doi: 10.1142/S0218202511005131. |
[9] |
B. Chopard and M. Droz, Cellular automata model for the diffusion equation, Journal of Statistical Physics, 64 (1991), 859-892.doi: 10.1007/BF01048321. |
[10] |
B. Chopard and M. Droz, "Cellular Automata Modeling of Physical Systems," Collection Aléa-Saclay: Monographs and Texts in Statistical Physics, Cambridge University Press, Cambridge, 1998. |
[11] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.doi: 10.1137/100797515. |
[12] |
A. Devenow and I. Welch, Rational herding in financial economics, Papers and Proceedings of the Tenth Annual Congress of the European Economic Association, European Economic Review, 40 (1996), 603-615.doi: 10.1016/0014-2921(95)00073-9. |
[13] |
M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, Journal of Differential Equations, 250 (2011), 1334-1362.doi: 10.1016/j.jde.2010.10.015. |
[14] |
M. Di Francesco and J. Rosado, Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding, Nonlinearity, 21 (2008), 2715-2730.doi: 10.1088/0951-7715/21/11/012. |
[15] |
E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959), 269-271.doi: 10.1007/BF01386390. |
[16] |
C. Dogbé, Modeling crowd dynamics by the mean-field limit approach, Mathematical and Computer Modelling, 52 (2010), 1506-1520. |
[17] |
Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity, SIAM J. Appl. Math., 66 (2005), 286-308.doi: 10.1137/040612841. |
[18] |
H. Egger, A class of hybrid mortar finite element methods for interface problems with non-matching meshes, Technical Report AICES-2009-2, submitted. |
[19] |
V. for linear stability, Available from: http://www.jfpietschmann.eu/crowdmotion. |
[20] |
M. Fukui and Y. Ishibashi, Self-organized phase transitions in CA-models for pedestrians, J. Phys. Soc. Japan, 8 (1999), 2861-2863.doi: 10.1143/JPSJ.68.2861. |
[21] |
G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61.doi: 10.1007/BF02181479. |
[22] |
P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. |
[23] |
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73 (2001), 1067-1141.doi: 10.1103/RevModPhys.73.1067. |
[24] |
D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51 (1995), 4282.doi: 10.1103/PhysRevE.51.4282. |
[25] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3. |
[26] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. |
[27] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. |
[28] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.doi: 10.1016/S0191-2615(01)00015-7. |
[29] |
E. Keller and L. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[30] |
A. Kirchner, "Modellierung und Statistische Physik Biologischer und Sozialer Systeme," Ph.D Thesis, 2002. |
[31] |
A. Kirchner and A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics, Physica A: Statistical Mechanics and its Applications, 312 (2002), 260-276. |
[32] |
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8. |
[33] |
P. A. Markowich, "The Stationary Semiconductor Device Equations," Computational Microelectronics, Springer-Verlag, Vienna, 1986. |
[34] |
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990.doi: 10.1007/978-3-7091-6961-2. |
[35] |
M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., 8 (1998), 3-30.doi: 10.1145/272991.272995. |
[36] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of the gradient-flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821.doi: 10.1142/S0218202510004799. |
[37] |
M. Muramatsu and T. Nagatani, Jamming transition in two-dimensional pedestrian traffic, Physica A, 275 (2000), 281-291.doi: 10.1016/S0378-4371(99)00447-1. |
[38] |
J. R. Nofsinger and R. W. Sias, Herding and feedback trading by institutional and individual investors, The Journal of Finance, 54 (1999), 2263-2295.doi: 10.1111/0022-1082.00188. |
[39] |
K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. |
[40] |
B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.doi: 10.1007/s00205-010-0366-y. |
[41] |
R. M. Raafat, N. Chater and C. Frith, Herding in humans, Trends in Cognitive Sciences, 13 (2009), 420-428.doi: 10.1016/j.tics.2009.08.002. |
[42] |
A. Schadschneider, W. Klingsch, H. Kluepfel, T. Kretz, C. Rogsch and A. Seyfried, Evacuation Dynamics: Empirical Results, Modeling and Applications, in "Encyclopedia of Complexity and System Science" (ed. R. A. Meyers), Vol. 3, pp. 3142, Springer, 2009. |
[43] |
O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with pardiso, Journal of Future Generation Computer Systems, 20 (2004), 475-487.doi: 10.1016/j.future.2003.07.011. |
[44] |
O. Schenk and K. Gärtner, On fast factorization pivoting methods for sparse symmetric indefinite systems, Elec. Trans. Numer. Anal, 23 (2006), 158-179. |
[45] |
J. Schöberl, Netgen an advancing front 2d/3d-mesh generator based on abstract rules, Computing and Visualization in Science, 1 (1997), 41-52.doi: 10.1007/s007910050004. |
[46] |
M. Simpson, K. Landman and B. Hughes, Diffusing populations: Ghosts or folks?, Australasian Journal of Engineering Education, 15 (2009), 59-67. |
[47] |
A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM Journal on Applied Mathematics, 66 (2006), 921-944.doi: 10.1137/040617790. |
[48] |
V. visualization environment, Available from: http://www.llnl.gov/visit/home.html. |
[49] |
U. Weidmann, "Transporttechnik der Fussgänger-Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturstudie)," in German, Literature Research, 90, Institut für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau IVT an der ETH Zürich, ETH-Hönggerberg, CH-8093 Zürich, March 1993. |
[50] |
D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Analysis, 59 (2004), 1293-1310. |