Advanced Search
Article Contents
Article Contents

The Spherical Harmonics Expansion model coupled to the Poisson equation

Abstract Related Papers Cited by
  • The Spherical Harmonics Expansion (SHE) assumes a momentum distribution function only depending on the microscopic kinetic energy. The SHE-Poisson system describes carrier transport in semiconductors with self-induced electrostatic potential. Existence of weak solutions to the SHE-Poisson system subject to periodic boundary conditions is established, based on appropriate a priori estimates and a Schauder fixed point procedure. The long time behavior of the one-dimensional Dirichlet problem with well prepared boundary data is studied by an entropy-entropy dissipation method. Strong convergence to equilibrium is proven. In contrast to earlier work, the analysis is carried out without the use of the derivation from a kinetic problem.
    Mathematics Subject Classification: Primary: 35K65, 35Q82; Secondary: 58Z05.


    \begin{equation} \\ \end{equation}
  • [1]

    N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Meth. in the Appl. Sci., 17 (1994), 451-476.doi: 10.1002/mma.1670170604.


    N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.doi: 10.1063/1.531567.


    N. Ben Abdallah and J. Dolbeault, Relative entropies for the Vlasov-Poisson system in bounded domains, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 867-872.doi: 10.1016/S0764-4442(00)00268-8.


    N. Ben Abdallah, P. Degond, P. Markowich and C. Schmeiser, High field approximations of the spherical harmonics expansion model for semiconductors, ZAMP, 52 (2001), 201-230.doi: 10.1007/PL00001544.


    N. Ben Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system, DCDS-B, 4 (2004), 1129-1142.doi: 10.3934/dcdsb.2004.4.1129.


    H. Brezis, "Analyse Fonctionnelle, Théorie et Applications,'' Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.


    D. Chen, E. C. Kan, U. Ravaioli, C. Shu and R. W. Dutton, An improved energy transport model including non-parabolicity and non-Maxwellian distribution effects, IEEE Electron Dev. Lett., 13 (1992), 235-239.


    C. Cercignani, R. Illner, M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'' Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.


    P. Degond and S. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys., 39 (1998), 4634-4663.doi: 10.1063/1.532528.


    L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, Rhode Island, 1998.


    H. Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids, 6 (1963), 147-181.doi: 10.1063/1.1706716.


    H. Grad, Principles of the kinetic theory of gases, in "Handbuch der Physik" (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin-Göttingen-Heidelberg, (1958), 205-294.


    E. Lyumkis, B. Polsky, A. Shur and P. Visocky, Transient semiconductor device simulation including energy balance equation, COMPEL, 11 (1992), 311-325.


    P. A. Markowich, F. Popaud and C. Schmeiser, Diffusion approximation of nonlinear electron phonon collision mechanisms, RAIRO Modél. Math. Anal. Num., 29 (1995), 857-869.


    P. A. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations,'' Springer-Verlag, Vienna, 1990.doi: 10.1007/978-3-7091-6961-2.


    N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system, SIAM J. Math. Anal., 38 (2007), 1788-1807.doi: 10.1137/050630763.


    M. L. Tayeb, From Boltzmann equation to spherical harmonics expansion model: Diffusion limit and Poisson coupling, Comm. Math. Sci., 9 (2011), 255-275.

  • 加载中

Article Metrics

HTML views() PDF downloads(133) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint