Citation: |
[1] |
M. Baer, "Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections,'' Wiley, Hoboken, New Jersey, 2006.doi: 10.1002/0471780081. |
[2] |
W. Bao, S. Jin and P. Markowich, On the time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), 487-524.doi: 10.1006/jcph.2001.6956. |
[3] |
M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys., 84 (1927), 457-484.doi: 10.1002/andp.19273892002. |
[4] |
N. Ben Abdallah, P. Degond and I. M. Gamba, Coupling one-dimensional time-dependent classical and quantum transport models, J. Math. Phys., 43 (2002), 1-24.doi: 10.1063/1.1421635. |
[5] |
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond Ser. A, 392 (1984), 45-57.doi: 10.1098/rspa.1984.0023. |
[6] |
V. Cerveny, M. M. Popov and I. Psencik, Computation of wave fields in inhomogeneous media-Gaussian beam approach, Geophys. J. R. Astr. Soc., 70 (1982), 109-128. |
[7] |
K. Drukker, Basics of surface hopping in mixed quantum/classical simulations, J. Comp. Phys., 153 (1999), 225-272.doi: 10.1006/jcph.1999.6287. |
[8] |
P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Communications on Pure and Applied Mathematics, 50 (1997), 323-379.doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. |
[9] |
E. J. Heller, Cellular dynamics: A new semiclassical approach to time-dependent quantum mechanics, J. Chem. Phys., 94 (1991), 2723-2729.doi: 10.1063/1.459848. |
[10] |
N. R. Hill, Gaussian beam migration, Geophys., 55 (1990), 1416-1428.doi: 10.1190/1.1442788. |
[11] |
I. Horenko, C. Salzmann, B. Schmidt and C. Schutte, Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets, J. Chem. Phys., 117 (2002), 11075-11088.doi: 10.1063/1.1522712. |
[12] |
S. Jin, P. Markowich and C. Sparber, Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numerica, 20 (2011), 211-289. |
[13] |
S. Jin and K. Novak, A semiclassical transport model for thin quantum barriers, Multiscale Modeling and Simulation, 5 (2006), 1063-1086.doi: 10.1137/060653214. |
[14] |
S. Jin and K. Novak, A semiclassical transport model for two-dimensional thin quantum barriers, J. Comp. Phys., 226 (2007), 1623-1644.doi: 10.1016/j.jcp.2007.06.006. |
[15] |
S. Jin and K. Novak, A coherent semiclassical transport model for pure-state quantum scattering, Comm. Math. Sci., 8 (2010), 253-275. |
[16] |
S. Jin, P. Qi and Z. Zhang, An Eulerian surface hopping method for the Schrödinger equation with conical crossings, SIAM Multiscale Modeling & Simulation, 9 (2011), 258-281. |
[17] |
S. Jin, H. Wu and X. Yang, Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations, Comm. Math. Sci., 6 (2008), 995-1020. |
[18] |
S. Jin and D. Yin, Computation of high frequency wave diffraction by a half plane via the Liouville equation and geometric theory of diffraction, Communications in Computational Physics, 4 (2008), 1106-1128. |
[19] |
L. Landau, Zur Theorie der Energiebertragung II, Physics of the Soviet Union, 2 (1932), 46-51. |
[20] |
C. F. Kammerer and C. Lasser, Wigner measures and codimension two crossings, Jour. Math. Phys., 44 (2003), 507-527.doi: 10.1063/1.1527221. |
[21] |
C. F. Kammerer and C. Lasser, Single switch surface hopping for molecular dynamics with transitions, J. Chem. Phys., 128 (2008), 5-9. |
[22] |
C. Lasser, T. Swart and S. Teufel, Construction and validation of a rigorous surface hopping algorithm for conical crossings, Comm. Math. Sci., 5 (2007), 789-814. |
[23] |
S. Leung, J. Qian and R. Burridge, Eulerian Gaussian beams for high frequency wave propagation, Geophysics, 72 (2007), 61-76.doi: 10.1190/1.2752136. |
[24] |
J. Lu and X. Yang, Frozen Gaussian approximation for high frequency wave propagation, Commun. Math. Sci., 9 (2011), 663-683. |
[25] |
M. Motamed and O. Runborg, Taylor expansion and discretization errors in Gaussian beam superposition, Wave Motion, 47 (2010), 421-439.doi: 10.1016/j.wavemoti.2010.02.001. |
[26] |
W. H. Miller and Thomas F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, Journal of Chemical Physics, 56 (1972), 5637-5652.doi: 10.1063/1.1677083. |
[27] |
B. N. Parlett, "The Symmetric Eigenvalue Problem,'' Classics ed., SIAM, Philadelphia, PA, USA, 1998. |
[28] |
M. M. Popov, A new method of computation of wave fields using Gaussian beams, Wave Motion, 4 (1982), 85-97.doi: 10.1016/0165-2125(82)90016-6. |
[29] |
J. Qian and L. Ying, Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation, J. Comput. Phys., 229 (2010), 7848-7873.doi: 10.1016/j.jcp.2010.06.043. |
[30] |
J. Ralston, Gaussian beams and the propagation of singularities, in "Studies in PDEs," MAA. Stud. Math., 23, Math. Assoc. America, Washington, DC, (1982), 206-248. |
[31] |
D. Sholla and J. Tully, A generalized surface hopping method, J. Chem. Phys., 109 (1998), 7702.doi: 10.1063/1.477416. |
[32] |
J. Tully and R. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of $H^+$ with $D_2$, J. Chem. Phys., 55 (1971), 562-572.doi: 10.1063/1.1675788. |
[33] |
J. Tully, Molecular dynamics with electronic transitions, J. Chem. Phys., 93 (1990), 1061.doi: 10.1063/1.459170. |
[34] |
N. Tanushev, Superpositions and higher order Gaussian beams, Commun. Math. Sci., 6 (2008), 449-475. |
[35] |
N. Tanushev, J. Qian and J. Ralston, Mountain waves and Gaussian beams, SIAM J. Multiscale Model. Simul., 6 (2007), 688-709.doi: 10.1137/060673667. |
[36] |
N. M. Tanushev, R. Tsai and B. Engquist, Coupled finite difference-Gaussian beam method for high frequency wave propagation, UCLA CAM Reports, (2010), 10-40. |
[37] |
N. M. Tanushev, B. Engquist and R. Tsai, Gaussian beam decomposition of high frequency wave fields, Journal of Computational Physics, 228 (2009), 8856-8871.doi: 10.1016/j.jcp.2009.08.028. |
[38] |
A. Voronin, J. Marques and A. Varandas, Trajectory surface hopping study of the $Li$ + $Li_2$ ($X^1\Sigma_g^+$) Dissociation reaction, J. Phys. Chem. A, 102 (1998), 6057-6062.doi: 10.1021/jp9805860. |
[39] |
D. Wei and X. Yang, Gaussian beam method for high frequency wave propagation in heterogeneous media, preprint 2011. |
[40] |
W. R. E. Weiss and G. A. Hagedorn, Reflection and transmission of high freuency pulses at an interface, Transport Theory and Statistical Physics, 14 (1985), 539-565.doi: 10.1080/00411458508211692. |
[41] |
D. Yin and C. Zheng, Gaussian beam formulations and interface conditions for the one-dimensional linear Schrödinger equation, Wave Motion, 48 (2011), 310-324.doi: 10.1016/j.wavemoti.2010.11.006. |
[42] |
D. Yin and C. Zheng, Composite Gaussian beam approximation method for multi-phased wave functions, preprint, 2011. |
[43] |
C. Zener, Non-adiabatic crossing of energy levels, Proceedings of the Royal Society of London, Series A, 137 1932, 692-702. |