\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A problem of moment realizability in quantum statistical physics

Abstract Related Papers Cited by
  • This work is a generalization of the results previously obtained in [17] in a one-dimensional setting: we revisit the problem of the minimization of the quantum free energy (entropy + energy) under local constraints (moments) and prove the existence of minimizers in various configurations. While [17] addressed the 1D case on bounded domains, we treat in the present paper the multi-dimensional case as well as unbounded domains and non-linear interactions as Hartree/Hartree-Fock. Moreover, whereas [17] dealt with the first moment only, namely the charge density, we extend the results to the second moment, the current density.
    Mathematics Subject Classification: Primary: 35Q405; Secondary: 82B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Arnold, Self-consistent relaxation-time models in quantum mechanics, Comm. Partial Differential Equations, 21 (1996), 473-506.

    [2]

    L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory, 23 (1990), 3-19.

    [3]

    P. Degond, S. Gallego and F. Méhats, An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, J. Comput. Phys., 221 (2007), 226-249.doi: 10.1016/j.jcp.2006.06.027.

    [4]

    _____, Isothermal quantum hydrodynamics: Derivation, asymptotic analysis, and simulation, Multiscale Model. Simul., 6 (2007), 246-272.doi: 10.1137/06067153X.

    [5]

    _____, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908.

    [6]

    P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum hydrodynamic and diffusion models derived from the entropy principle, in "Quantum Transport," Lecture Notes in Math., 1946, Springer, Berlin, (2008), 111-168.

    [7]

    P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667.doi: 10.1007/s10955-004-8823-3.

    [8]

    _____, Quantum hydrodynamic models derived from the entropy principle, in "Nonlinear Partial Differential Equations and Related Analysis," Contemp. Math., Amer. Math. Soc., 371, Providence, RI, (2005), 107-131.

    [9]

    P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., 112 (2003), 587-628.doi: 10.1023/A:1023824008525.

    [10]

    J. Dolbeault, P. Felmer, M. Loss and E. Paturel, Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal., 238 (2006), 193-220.doi: 10.1016/j.jfa.2005.11.008.

    [11]

    J. Dolbeault, P. Felmer and M. Lewin, Orbitally stable states in generalized Hartree-Fock theory, Math. Models Methods Appl. Sci., 19 (2009), 347-367.doi: 10.1142/S0218202509003450.

    [12]

    A. Jüngel and D. Matthes, A derivation of the isothermal quantum hydrodynamic equations using entropy minimization, ZAMM Z. Angew. Math. Mech., 85 (2005), 806-814.doi: 10.1002/zamm.200510232.

    [13]

    A. Jüngel, D. Matthes and J. P. Milišić, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67 (2006), 46-68.doi: 10.1137/050644823.

    [14]

    M. Junk, Domain of definition of Levermore's five-moment system, J. Statist. Phys., 93 (1998), 1143-1167.doi: 10.1023/B:JOSS.0000033155.07331.d9.

    [15]

    C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065.doi: 10.1007/BF02179552.

    [16]

    P.-L. Lions, Hartree-Fock and related equations, in "Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. IX" (Paris, 1985-1986), Pitman Res. Notes Math. Ser., 181, Longman Sci. Tech., Harlow, (1988), 304-333.

    [17]

    F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys., 140 (2010), 565-602.doi: 10.1007/s10955-010-0003-z.

    [18]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis," Second edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.

    [19]

    B. Simon, "Trace Ideals and their Applications," Second edition, Mathematical Surveys and Monographs, 120, American Mathematical Society, Providence, RI, 2005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return