March  2011, 4(1): 153-167. doi: 10.3934/krm.2011.4.153

On a kinetic BGK model for slow chemical reactions

1. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma, Italy, Italy

Received  July 2010 Revised  October 2010 Published  January 2011

A recently proposed consistent BGK-type approach for chemically reacting gas mixtures is discussed, which accounts for the correct rates of transfer for mass, momentum and energy, and recovers the exact conservation equations and collision equilibria, including mass action law. In particular, the hydrodynamic limit is derived by a Chapman-Enskog procedure, and compared to existing results for the reactive and non-reactive cases.
Citation: Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153
References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'' Dover, New York, 1965.

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018. doi: 10.1023/A:1014033703134.

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory, Phys. Fluids A, 2 (1990), 1867-1878. doi: 10.1063/1.857661.

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524. doi: 10.1103/PhysRev.94.511.

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction, Continuum Mech. Thermodyn., 14 (2002), 207-222. doi: 10.1007/s001610100066.

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures, Applications of Mathematics, 50 (2005), 43-62. doi: 10.1007/s10492-005-0003-5.

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures, in "Proceedings of 26th International Symposium on Rarefied Gas Dynamics'' (Kyoto, Japan, July 21-25, 2008), T. Abe Ed., A.I.P., New York, 2009, pp. 87-92.

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327. doi: 10.1103/PhysRevE.81.036327.

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Review C, 7 (1988), 112-229.

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'' Springer Verlag, New York, 1988.

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'' Cambridge University Press, Cambridge, 2000.

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'' University Press, Cambridge, 1970.

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'' Butterworths, London, 1964.

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture, J. Phys. A, 36 (2003), 5381-5398. doi: 10.1088/0305-4470/36/20/303.

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'' North Holland, Amsterdam, 1962.

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Europ. J. Mech./B Fluids, 24 (2005), 219-236. doi: 10.1016/j.euromechflu.2004.07.004.

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems, Proc. R. Soc. Lond. A, 307 (1968), 111-135. doi: 10.1098/rspa.1968.0178.

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'' North Holland, Amsterdam, 1972.

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380-383. doi: 10.1063/1.857458.

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'' Birkhäuser Verlag, Boston, 1999.

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219. doi: 10.1023/A:1019194113816.

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Physics of Fluids, 16 (2004), 4273-4284. doi: 10.1063/1.1808651.

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'' Wiley, New York, 2003. doi: 10.1002/0471461296.

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. of Fluids, 18 (2006), 037104. doi: 10.1063/1.2185691.

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chemical Engineering Science, 52 (1997), 861-911. doi: 10.1016/S0009-2509(96)00458-7.

[26]

K. K. Kuo, "Principles of Combustion,'' Wiley, New York, 2005.

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes, J. Phys. A: Math. Gen., 38 (2005), 10413-10431. doi: 10.1088/0305-4470/38/48/012.

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573. doi: 10.1016/S0378-4371(99)00336-2.

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'' Birkhäuser Verlag, Boston, 2002.

[30]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'' Dover, New York, 1965.

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018. doi: 10.1023/A:1014033703134.

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory, Phys. Fluids A, 2 (1990), 1867-1878. doi: 10.1063/1.857661.

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524. doi: 10.1103/PhysRev.94.511.

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction, Continuum Mech. Thermodyn., 14 (2002), 207-222. doi: 10.1007/s001610100066.

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures, Applications of Mathematics, 50 (2005), 43-62. doi: 10.1007/s10492-005-0003-5.

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures, in "Proceedings of 26th International Symposium on Rarefied Gas Dynamics'' (Kyoto, Japan, July 21-25, 2008), T. Abe Ed., A.I.P., New York, 2009, pp. 87-92.

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327. doi: 10.1103/PhysRevE.81.036327.

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Review C, 7 (1988), 112-229.

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'' Springer Verlag, New York, 1988.

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'' Cambridge University Press, Cambridge, 2000.

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'' University Press, Cambridge, 1970.

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'' Butterworths, London, 1964.

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture, J. Phys. A, 36 (2003), 5381-5398. doi: 10.1088/0305-4470/36/20/303.

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'' North Holland, Amsterdam, 1962.

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Europ. J. Mech./B Fluids, 24 (2005), 219-236. doi: 10.1016/j.euromechflu.2004.07.004.

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems, Proc. R. Soc. Lond. A, 307 (1968), 111-135. doi: 10.1098/rspa.1968.0178.

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'' North Holland, Amsterdam, 1972.

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380-383. doi: 10.1063/1.857458.

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'' Birkhäuser Verlag, Boston, 1999.

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219. doi: 10.1023/A:1019194113816.

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Physics of Fluids, 16 (2004), 4273-4284. doi: 10.1063/1.1808651.

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'' Wiley, New York, 2003. doi: 10.1002/0471461296.

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. of Fluids, 18 (2006), 037104. doi: 10.1063/1.2185691.

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chemical Engineering Science, 52 (1997), 861-911. doi: 10.1016/S0009-2509(96)00458-7.

[26]

K. K. Kuo, "Principles of Combustion,'' Wiley, New York, 2005.

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes, J. Phys. A: Math. Gen., 38 (2005), 10413-10431. doi: 10.1088/0305-4470/38/48/012.

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573. doi: 10.1016/S0378-4371(99)00336-2.

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'' Birkhäuser Verlag, Boston, 2002.

[30]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.

[1]

Young-Pil Choi, Seok-Bae Yun. A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15 (3) : 389-404. doi: 10.3934/nhm.2020024

[2]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic and Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[3]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic and Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[4]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[5]

Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030

[6]

Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010

[7]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic and Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[8]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[9]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[10]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[11]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[12]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[13]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[14]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[15]

Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic and Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054

[16]

Byung-Hoon Hwang, Ho Lee, Seok-Bae Yun. Relativistic BGK model for massless particles in the FLRW spacetime. Kinetic and Related Models, 2021, 14 (6) : 949-959. doi: 10.3934/krm.2021031

[17]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[18]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[19]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure and Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[20]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]