March  2011, 4(1): 259-276. doi: 10.3934/krm.2011.4.259

Kinetic approach to deflagration processes in a recombination reaction

1. 

Dipartimento di Matematica, Università di Messina, Viale F. Stagno d'Alcontres 31 - 98166 Messina, Italy

2. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43100 Parma

3. 

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24 - 10129 Torino, Italy

4. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma

Received  July 2010 Revised  October 2010 Published  January 2011

Steady one-dimensional flame structure is investigated in a binary gas mixture made up by diatomic molecules and atoms, which undergo an irreversible exothermic two--steps reaction, a recombination process followed by inelastic scattering (de-excitation). A kinetic model at the Boltzmann level, accounting for chemical encounters as well as for mechanical collisions, is proposed and its main features are analyzed. In the case of collision dominated regime with slow recombination and fast de-excitation, the model is the starting point for a consistent derivation, via suitable asymptotic expansion of Chapman-Enskog type, of reactive fluid-dynamic Navier-Stokes equations. The resulting set of ordinary differential equations for the smooth steady deflagration profile is investigated in the frame of the qualitative theory of dynamical systems, and numerical results for the flame eigenvalue and for the main macroscopic observables are presented and briefly commented on for illustrative purposes.
Citation: Fiammetta Conforto, Maria Groppi, Roberto Monaco, Giampiero Spiga. Kinetic approach to deflagration processes in a recombination reaction. Kinetic and Related Models, 2011, 4 (1) : 259-276. doi: 10.3934/krm.2011.4.259
References:
[1]

M. Bisi, M. Groppi and G. Spiga, Flame structure from a kinetic model for chemical reactions, Kinetic and Related Models, 3 (2010), 17-34. doi: 10.3934/krm.2010.3.17.

[2]

V. C. Boffi, V. Protopopescu and G. Spiga, On the equivalence between the probabilistic, kinetic, and scattering kernel formulations of the Boltzmann equation, Physica A, 164 (1990), 400-410. doi: 10.1016/0378-4371(90)90203-5.

[3]

C. Cercignani, "The Boltzmann Equation and its Applications,'' Springer, New York, 1988.

[4]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'' University Press, Cambridge, 2000.

[5]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,'' University Press, Cambridge, 1990.

[6]

R. M. Colombo and A. Corli, Sonic and kinetic phase transitions with applications to Chapman–Jouguet deflagrations, Math. Meth. Appl. Sci., 27 (2004), 843-864. doi: 10.1002/mma.474.

[7]

S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics,'' North-Holland, Amsterdam, 1963.

[8]

W. Fickett and W. C. Davis, "Detonation, Theory and Experiment,'' Dover, New York, 1979.

[9]

V. Giovangigli, "Multicomponent Flow Modeling,'' Birkhäuser, Boston, 1999.

[10]

I. Glassman, "Combustion,'' Academic Press, New York, 1987.

[11]

M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state, J. Phys. A: Math. Gen., 33 (2000), 8819-8833. doi: 10.1088/0305-4470/33/48/317.

[12]

D. Jacob, "Introduction to Atmosperic Chemistry,'' University Press, Princeton, 1999.

[13]

L. He, Analysis of compressibility effects on Darrieus-Landau instability of deflagration wave, Europhys. Lett., 49 (2000), 576-582. doi: 10.1209/epl/i2000-00189-8.

[14]

L. Kagan, On the transition from deflagration to detonation in narrow channels, Math. Model. Nat. Phenom., 2 (2007), 40-55. doi: 10.1051/mmnp:2008018.

[15]

A. K. Kapila, B. J. Matkowsky and A. van Harten, An asymptotic theory of deflagrations and detonations. I. The steady solutions, SIAM J. Appl. Math., 43 (1983), 491-519. doi: 10.1137/0143032.

[16]

K. K. Kuo, "Principles of Combustion,'' Wiley, Hoboken (New Jersey), 2005.

[17]

S. B. Margolis and M. R. Baer, A singular-perturbation analysis of the burning-rate eigenvalue for a two-temperature model of deflagrations in confined porous energetic materials, SIAM J. Appl. Math., 62 (2001), 627-663. doi: 10.1137/S0036139900377780.

[18]

J. Menkes, On the stability of a plane deflagration wave, Proc. Roy. Soc. London. Ser. A, 253 (1959), 380-389.

[19]

J. R. Mika and J. Banasiak, "Singularly Perturbed Evolution Equations with Applications to Kinetic Theory,'' World, Singapore, 1995.

[20]

I. Müller, Flame structure in ordinary and extended thermodynamics, in "Asymptotic Methods in Nonlinear Wave Phenomena'' (eds. T. Ruggeri and M. Sammartino), World, Singapore, (2007), 144-153. doi: 10.1142/9789812708908_0013.

[21]

L. Pan and W. Sheng, The scalar Zeldovich-von Neumann-Doering combustion model (II) interactions of shock and deflagration, Nonlinear Analysis: Real World Applications, 10 (2009), 449-457. doi: 10.1016/j.nonrwa.2007.10.006.

[22]

W. C. Sheng and D. C. Tan, Weak deflagration solutions to the simplest combustion model, Journal of Differential Equations, 107 (1994), 207-230. doi: 10.1006/jdeq.1994.1009.

[23]

S. Takata and K. Aoki, Two-surface problems of a multicomponent mixture of vapors and non condensable gases in the continuum limit in the light of kinetic theory, Phys. Fluids, 11 (1999), 2743-2756. doi: 10.1063/1.870133.

[24]

S. Takata, Kinetic theory analysis of the two-surface problem of a vapor-vapor mixture in the continuum limit, Phys. Fluids, 16 (2004), 2182-2198. doi: 10.1063/1.1723464.

[25]

D. H. Wagner, Existence of deflagration waves: Connection to a degenerate critical point, in "Lecture Notes in Pure and Appl. Math.," 102, Dekker, New York, (1985), 187-197.

[26]

Y. Yoshizawa, Wave structures of chemically reacting gas by the kinetic theory of gases, in "Rarefied Gas Dynamics'' (ed. J.L. Potter), A.I.A.A., New York, (1977), 501-517.

[27]

P. Zhang and T. Zhang, The Riemann problem for scalar CJ-combustion model without convexity, Discrete and Cont. Dynamical Systems, 1 (1995), 195-206.

show all references

References:
[1]

M. Bisi, M. Groppi and G. Spiga, Flame structure from a kinetic model for chemical reactions, Kinetic and Related Models, 3 (2010), 17-34. doi: 10.3934/krm.2010.3.17.

[2]

V. C. Boffi, V. Protopopescu and G. Spiga, On the equivalence between the probabilistic, kinetic, and scattering kernel formulations of the Boltzmann equation, Physica A, 164 (1990), 400-410. doi: 10.1016/0378-4371(90)90203-5.

[3]

C. Cercignani, "The Boltzmann Equation and its Applications,'' Springer, New York, 1988.

[4]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'' University Press, Cambridge, 2000.

[5]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,'' University Press, Cambridge, 1990.

[6]

R. M. Colombo and A. Corli, Sonic and kinetic phase transitions with applications to Chapman–Jouguet deflagrations, Math. Meth. Appl. Sci., 27 (2004), 843-864. doi: 10.1002/mma.474.

[7]

S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics,'' North-Holland, Amsterdam, 1963.

[8]

W. Fickett and W. C. Davis, "Detonation, Theory and Experiment,'' Dover, New York, 1979.

[9]

V. Giovangigli, "Multicomponent Flow Modeling,'' Birkhäuser, Boston, 1999.

[10]

I. Glassman, "Combustion,'' Academic Press, New York, 1987.

[11]

M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state, J. Phys. A: Math. Gen., 33 (2000), 8819-8833. doi: 10.1088/0305-4470/33/48/317.

[12]

D. Jacob, "Introduction to Atmosperic Chemistry,'' University Press, Princeton, 1999.

[13]

L. He, Analysis of compressibility effects on Darrieus-Landau instability of deflagration wave, Europhys. Lett., 49 (2000), 576-582. doi: 10.1209/epl/i2000-00189-8.

[14]

L. Kagan, On the transition from deflagration to detonation in narrow channels, Math. Model. Nat. Phenom., 2 (2007), 40-55. doi: 10.1051/mmnp:2008018.

[15]

A. K. Kapila, B. J. Matkowsky and A. van Harten, An asymptotic theory of deflagrations and detonations. I. The steady solutions, SIAM J. Appl. Math., 43 (1983), 491-519. doi: 10.1137/0143032.

[16]

K. K. Kuo, "Principles of Combustion,'' Wiley, Hoboken (New Jersey), 2005.

[17]

S. B. Margolis and M. R. Baer, A singular-perturbation analysis of the burning-rate eigenvalue for a two-temperature model of deflagrations in confined porous energetic materials, SIAM J. Appl. Math., 62 (2001), 627-663. doi: 10.1137/S0036139900377780.

[18]

J. Menkes, On the stability of a plane deflagration wave, Proc. Roy. Soc. London. Ser. A, 253 (1959), 380-389.

[19]

J. R. Mika and J. Banasiak, "Singularly Perturbed Evolution Equations with Applications to Kinetic Theory,'' World, Singapore, 1995.

[20]

I. Müller, Flame structure in ordinary and extended thermodynamics, in "Asymptotic Methods in Nonlinear Wave Phenomena'' (eds. T. Ruggeri and M. Sammartino), World, Singapore, (2007), 144-153. doi: 10.1142/9789812708908_0013.

[21]

L. Pan and W. Sheng, The scalar Zeldovich-von Neumann-Doering combustion model (II) interactions of shock and deflagration, Nonlinear Analysis: Real World Applications, 10 (2009), 449-457. doi: 10.1016/j.nonrwa.2007.10.006.

[22]

W. C. Sheng and D. C. Tan, Weak deflagration solutions to the simplest combustion model, Journal of Differential Equations, 107 (1994), 207-230. doi: 10.1006/jdeq.1994.1009.

[23]

S. Takata and K. Aoki, Two-surface problems of a multicomponent mixture of vapors and non condensable gases in the continuum limit in the light of kinetic theory, Phys. Fluids, 11 (1999), 2743-2756. doi: 10.1063/1.870133.

[24]

S. Takata, Kinetic theory analysis of the two-surface problem of a vapor-vapor mixture in the continuum limit, Phys. Fluids, 16 (2004), 2182-2198. doi: 10.1063/1.1723464.

[25]

D. H. Wagner, Existence of deflagration waves: Connection to a degenerate critical point, in "Lecture Notes in Pure and Appl. Math.," 102, Dekker, New York, (1985), 187-197.

[26]

Y. Yoshizawa, Wave structures of chemically reacting gas by the kinetic theory of gases, in "Rarefied Gas Dynamics'' (ed. J.L. Potter), A.I.A.A., New York, (1977), 501-517.

[27]

P. Zhang and T. Zhang, The Riemann problem for scalar CJ-combustion model without convexity, Discrete and Cont. Dynamical Systems, 1 (1995), 195-206.

[1]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic and Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[2]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[3]

Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35

[4]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[5]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[6]

Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers. Communications on Pure and Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889

[7]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks and Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[8]

Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes. A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4 (4) : 755-788. doi: 10.3934/nhm.2009.4.755

[9]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[10]

Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings. Mathematical Biosciences & Engineering, 2013, 10 (3) : 743-759. doi: 10.3934/mbe.2013.10.743

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic and Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[13]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[14]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[15]

Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic and Related Models, 2010, 3 (4) : 529-644. doi: 10.3934/krm.2010.3.529

[16]

Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030

[17]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic and Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[18]

Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030

[19]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[20]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (5)

[Back to Top]