-
Previous Article
Fourteen moment theory for granular gases
- KRM Home
- This Issue
-
Next Article
Celebrating Cercignani's conjecture for the Boltzmann equation
Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction
1. | Department of Mathematics, University of Wisconsin, Madison, WI 53706 |
2. | Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China |
References:
[1] |
J.-D. Benamou, An introduction to Eulerian geometrical optics(1992-2002), J. Sci. Comp., 19 (2001), 63-93.
doi: 10.1023/A:1025339522111. |
[2] |
A. K. Bhattacharyya, "High-Frequency Electromagnetic Techniques: Recent Advances and Application," John Wiley $&$ Sons, Inc., 1995. |
[3] |
Y. Brenier and E. Grenier, Strickly particles and scalar conservation laws, SIAM, J. Num. Anal., 38 (1998), 2317-2328.
doi: 10.1137/S0036142997317353. |
[4] |
R. N. Buchal and J. B. Keller, Boundary layer problems in diffraction theory, Comm. Pure Appl. Math., 13 (1960), 85-114.
doi: 10.1002/cpa.3160130109. |
[5] |
V. Cĕrvený, "Seismic Ray Theory," Cambridge University Press, 2001. |
[6] |
L.-T. Cheng, H.-L. Liu and S. Osher, Computational high-frequency wave propagation using the Level Set method, with applications to the semi-classical limit of Schrödinger equations, Comm. Math. Sci., 1 (2003), 593-621. |
[7] |
G. Cohen, "Higher-Order Numerical Methods for Transient Wave Equations," Springer, Berlin; New York, 2002. |
[8] |
M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[9] |
G. A. Deschamps, High frequency diffraction by wedges, IEEE Transactions on Antennas and Propagation. AP-33 (1985), 357-368.
doi: 10.1109/TAP.1985.1143598. |
[10] |
B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numerica, 12 (2003), 181-266.
doi: 10.1017/S0962492902000119. |
[11] |
B. Engquist, O. Runborg, and A.-K. Tornberg, High frequency wave propagation by the segment projection method, J. Comput. Phys., 178 (2002), 373-390.
doi: 10.1006/jcph.2002.7033. |
[12] |
B. Engquist, A. -K. Tornberg and R. Tsai, Discretization of dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[13] |
E. Fatemi, B. Engquist and S. Osher, Numerical solution of the high frequency asymptotic expansion for the scalar wave equation, J. Comput. Phys., 120 (1995), 145-155.
doi: 10.1006/jcph.1995.1154. |
[14] |
S. Fomel and J. A. Sethian, Fast phase space computation of multiple arrivals, Proc. Natl. Acad. Sci. USA, 99 (2002), 7329-7334.
doi: 10.1073/pnas.102476599. |
[15] |
L. Gosse and N. J. Mauser, Multiphase semicalssical approximation of an electron in a one-dimensional crystalline lattice - III. From ab initio models to WKB for Schrödinger-Poisson, J. Comput. Phys., 211 (2006), 326-346.
doi: 10.1016/j.jcp.2005.05.020. |
[16] |
S. Jin and X. Li, Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner, Physics D, 182 (2003), 46-85.
doi: 10.1016/S0167-2789(03)00124-6. |
[17] |
S. Jin and X. Liao, A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media, J. Hyperbolic Diff Eqn., 3 (2006), 741-777.
doi: 10.1142/S0219891606000999. |
[18] |
S. Jin, H. L. Liu, S. Osher and R. Tsai, Computing multi-valued physical observables for high frequency limit of symmetric hyperbolic systems, J. Comp. Phys., 210 (2005), 497-518.
doi: 10.1016/j.jcp.2005.04.020. |
[19] |
S. Jin and S. Osher, A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations, Comm. Math. Sci., 1 (2003), 575-591. |
[20] |
S. Jin and X. Wen, Hamiltonian-preserving scheme for the Liouville equation with discontinuous potentials, Comm. Math. Sci., 3 (2005), 285-315. |
[21] |
S. Jin and X. Wen, A Hamiltonian-preserving scheme for the Liouville equation of geometric optics with partial transmissions and reflections, SIAM J. Num. Anal., 44 (2006), 1801-1828.
doi: 10.1137/050631343. |
[22] |
S. Jin and X. Wen, Computation of transmissions and reflections in geometric optics via the reduced Liouville equation, Wave Motion, 43 (2006), 667-688.
doi: 10.1016/j.wavemoti.2006.06.001. |
[23] |
S. Jin, H. Wu and X. Yang, Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations, Comm. Math. Sci., 6 (2008), 995-1020. |
[24] |
S. Jin and D. S. Yin, Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction, J. Comput. Phys., 227 (2008), 6106-6139.
doi: 10.1016/j.jcp.2008.02.029. |
[25] |
S. Jin and D. S. Yin, Computation of high frequency wave diffraction by a half plane via the Liouville equation and geometric theory of diffraction, Communications in Computational Physics, 4 (2008), 1106-1128. |
[26] |
J. B. Keller, Geometric theory of diffraction, J. Opt. Soc. of America, 52 (1962), 116-130.
doi: 10.1364/JOSA.52.000116. |
[27] |
J. B. Keller and R. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and maxwell's equations, In "Surveys in Applied Mathematics"(eds. D. McLaughlin J. B. Keller and G. Papanicolaou), Plenum Press, New York, 1995. |
[28] |
R. G. Kouyoumjian and P. H. Parthak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. Of the IEEE, 62 (1974), 1448-1461.
doi: 10.1109/PROC.1974.9651. |
[29] |
R. LeVeque, "Numerical Methods for Conservation Laws," Birkhauser, 1992. |
[30] |
L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl., 79 (2000), 227-269.
doi: 10.1016/S0021-7824(00)00158-6. |
[31] |
M. Motamed and O. Runborg, A fast phase space method for computing creeping rays, J. Comput. Phys., 219 (2006), 276-295.
doi: 10.1016/j.jcp.2006.03.024. |
[32] |
M. Motamed and O. Runborg, A multiple-patch phase space method for computing trajectories on manifolds with applications to wave propagation problems, Commun. Math. Sci., 5 (2007), 617-648. |
[33] |
S. Osher, L. T. Cheng, M. Kang, H. Shim and Y. -H. Tsai, Geometric optics in a phase-space-based level set and Eulerian framework, J. Comput. Phys., 179 (2002), 622-648.
doi: 10.1006/jcph.2002.7080. |
[34] |
L. Ryzhik, G. Papanicolaou and J. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), 327-370.
doi: 10.1016/S0165-2125(96)00021-2. |
[35] |
C. Sparber, N. Mauser and P. A. Markowich, Wigner functions vs. WKB techniques in multivalued geometric optics, J. Asympt. Anal., 33 (2003), 153-187. |
[36] |
P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys., 211 (2006), 77-90.
doi: 10.1016/j.jcp.2005.05.005. |
[37] |
N. M. Tanushev, B. Engquist and R. Tsai, Gaussian beam decomposition of high frequency wave fields, J. Comp. Phys., 228 (2009), 8856-8871.
doi: 10.1016/j.jcp.2009.08.028. |
[38] |
J. D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys., 220 (2007), 915-931.
doi: 10.1016/j.jcp.2006.05.037. |
[39] |
X. Wen, High order numerical methods to a type of delta function integrals, J. Comput. Phys., 226 (2007), 1952-1967.
doi: 10.1016/j.jcp.2007.06.025. |
[40] |
X. Wen, High order numerical methods to two dimensional delta function integrals in level set methods, J. Comput. Phys., 228 (2009), 4273-4290.
doi: 10.1016/j.jcp.2009.03.004. |
[41] |
X. Wen, High order numerical methods to three dimensional delta function integrals in level set methods, SIAM J. Sci. Comput., 32 (2010), 1288-1309.
doi: 10.1137/090758295. |
[42] |
L. Ying and E. J. Candés, Fast geodesics computation with the phase flow method, J. Comput. Phys., 220 (2006), 6-18.
doi: 10.1016/j.jcp.2006.07.032. |
show all references
References:
[1] |
J.-D. Benamou, An introduction to Eulerian geometrical optics(1992-2002), J. Sci. Comp., 19 (2001), 63-93.
doi: 10.1023/A:1025339522111. |
[2] |
A. K. Bhattacharyya, "High-Frequency Electromagnetic Techniques: Recent Advances and Application," John Wiley $&$ Sons, Inc., 1995. |
[3] |
Y. Brenier and E. Grenier, Strickly particles and scalar conservation laws, SIAM, J. Num. Anal., 38 (1998), 2317-2328.
doi: 10.1137/S0036142997317353. |
[4] |
R. N. Buchal and J. B. Keller, Boundary layer problems in diffraction theory, Comm. Pure Appl. Math., 13 (1960), 85-114.
doi: 10.1002/cpa.3160130109. |
[5] |
V. Cĕrvený, "Seismic Ray Theory," Cambridge University Press, 2001. |
[6] |
L.-T. Cheng, H.-L. Liu and S. Osher, Computational high-frequency wave propagation using the Level Set method, with applications to the semi-classical limit of Schrödinger equations, Comm. Math. Sci., 1 (2003), 593-621. |
[7] |
G. Cohen, "Higher-Order Numerical Methods for Transient Wave Equations," Springer, Berlin; New York, 2002. |
[8] |
M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.
doi: 10.1090/S0002-9947-1983-0690039-8. |
[9] |
G. A. Deschamps, High frequency diffraction by wedges, IEEE Transactions on Antennas and Propagation. AP-33 (1985), 357-368.
doi: 10.1109/TAP.1985.1143598. |
[10] |
B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numerica, 12 (2003), 181-266.
doi: 10.1017/S0962492902000119. |
[11] |
B. Engquist, O. Runborg, and A.-K. Tornberg, High frequency wave propagation by the segment projection method, J. Comput. Phys., 178 (2002), 373-390.
doi: 10.1006/jcph.2002.7033. |
[12] |
B. Engquist, A. -K. Tornberg and R. Tsai, Discretization of dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[13] |
E. Fatemi, B. Engquist and S. Osher, Numerical solution of the high frequency asymptotic expansion for the scalar wave equation, J. Comput. Phys., 120 (1995), 145-155.
doi: 10.1006/jcph.1995.1154. |
[14] |
S. Fomel and J. A. Sethian, Fast phase space computation of multiple arrivals, Proc. Natl. Acad. Sci. USA, 99 (2002), 7329-7334.
doi: 10.1073/pnas.102476599. |
[15] |
L. Gosse and N. J. Mauser, Multiphase semicalssical approximation of an electron in a one-dimensional crystalline lattice - III. From ab initio models to WKB for Schrödinger-Poisson, J. Comput. Phys., 211 (2006), 326-346.
doi: 10.1016/j.jcp.2005.05.020. |
[16] |
S. Jin and X. Li, Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner, Physics D, 182 (2003), 46-85.
doi: 10.1016/S0167-2789(03)00124-6. |
[17] |
S. Jin and X. Liao, A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media, J. Hyperbolic Diff Eqn., 3 (2006), 741-777.
doi: 10.1142/S0219891606000999. |
[18] |
S. Jin, H. L. Liu, S. Osher and R. Tsai, Computing multi-valued physical observables for high frequency limit of symmetric hyperbolic systems, J. Comp. Phys., 210 (2005), 497-518.
doi: 10.1016/j.jcp.2005.04.020. |
[19] |
S. Jin and S. Osher, A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations, Comm. Math. Sci., 1 (2003), 575-591. |
[20] |
S. Jin and X. Wen, Hamiltonian-preserving scheme for the Liouville equation with discontinuous potentials, Comm. Math. Sci., 3 (2005), 285-315. |
[21] |
S. Jin and X. Wen, A Hamiltonian-preserving scheme for the Liouville equation of geometric optics with partial transmissions and reflections, SIAM J. Num. Anal., 44 (2006), 1801-1828.
doi: 10.1137/050631343. |
[22] |
S. Jin and X. Wen, Computation of transmissions and reflections in geometric optics via the reduced Liouville equation, Wave Motion, 43 (2006), 667-688.
doi: 10.1016/j.wavemoti.2006.06.001. |
[23] |
S. Jin, H. Wu and X. Yang, Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations, Comm. Math. Sci., 6 (2008), 995-1020. |
[24] |
S. Jin and D. S. Yin, Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction, J. Comput. Phys., 227 (2008), 6106-6139.
doi: 10.1016/j.jcp.2008.02.029. |
[25] |
S. Jin and D. S. Yin, Computation of high frequency wave diffraction by a half plane via the Liouville equation and geometric theory of diffraction, Communications in Computational Physics, 4 (2008), 1106-1128. |
[26] |
J. B. Keller, Geometric theory of diffraction, J. Opt. Soc. of America, 52 (1962), 116-130.
doi: 10.1364/JOSA.52.000116. |
[27] |
J. B. Keller and R. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and maxwell's equations, In "Surveys in Applied Mathematics"(eds. D. McLaughlin J. B. Keller and G. Papanicolaou), Plenum Press, New York, 1995. |
[28] |
R. G. Kouyoumjian and P. H. Parthak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. Of the IEEE, 62 (1974), 1448-1461.
doi: 10.1109/PROC.1974.9651. |
[29] |
R. LeVeque, "Numerical Methods for Conservation Laws," Birkhauser, 1992. |
[30] |
L. Miller, Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl., 79 (2000), 227-269.
doi: 10.1016/S0021-7824(00)00158-6. |
[31] |
M. Motamed and O. Runborg, A fast phase space method for computing creeping rays, J. Comput. Phys., 219 (2006), 276-295.
doi: 10.1016/j.jcp.2006.03.024. |
[32] |
M. Motamed and O. Runborg, A multiple-patch phase space method for computing trajectories on manifolds with applications to wave propagation problems, Commun. Math. Sci., 5 (2007), 617-648. |
[33] |
S. Osher, L. T. Cheng, M. Kang, H. Shim and Y. -H. Tsai, Geometric optics in a phase-space-based level set and Eulerian framework, J. Comput. Phys., 179 (2002), 622-648.
doi: 10.1006/jcph.2002.7080. |
[34] |
L. Ryzhik, G. Papanicolaou and J. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), 327-370.
doi: 10.1016/S0165-2125(96)00021-2. |
[35] |
C. Sparber, N. Mauser and P. A. Markowich, Wigner functions vs. WKB techniques in multivalued geometric optics, J. Asympt. Anal., 33 (2003), 153-187. |
[36] |
P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys., 211 (2006), 77-90.
doi: 10.1016/j.jcp.2005.05.005. |
[37] |
N. M. Tanushev, B. Engquist and R. Tsai, Gaussian beam decomposition of high frequency wave fields, J. Comp. Phys., 228 (2009), 8856-8871.
doi: 10.1016/j.jcp.2009.08.028. |
[38] |
J. D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys., 220 (2007), 915-931.
doi: 10.1016/j.jcp.2006.05.037. |
[39] |
X. Wen, High order numerical methods to a type of delta function integrals, J. Comput. Phys., 226 (2007), 1952-1967.
doi: 10.1016/j.jcp.2007.06.025. |
[40] |
X. Wen, High order numerical methods to two dimensional delta function integrals in level set methods, J. Comput. Phys., 228 (2009), 4273-4290.
doi: 10.1016/j.jcp.2009.03.004. |
[41] |
X. Wen, High order numerical methods to three dimensional delta function integrals in level set methods, SIAM J. Sci. Comput., 32 (2010), 1288-1309.
doi: 10.1137/090758295. |
[42] |
L. Ying and E. J. Candés, Fast geodesics computation with the phase flow method, J. Comput. Phys., 220 (2006), 6-18.
doi: 10.1016/j.jcp.2006.07.032. |
[1] |
Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473 |
[2] |
Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621 |
[3] |
François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229 |
[4] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[5] |
Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979 |
[6] |
Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261 |
[7] |
Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1399-1412. doi: 10.3934/dcdss.2019096 |
[8] |
Deconinck Bernard, Olga Trichtchenko. High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1323-1358. doi: 10.3934/dcds.2017055 |
[9] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[10] |
Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015 |
[11] |
Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129 |
[12] |
Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95 |
[13] |
Yves Achdou, Fabio Camilli, Lucilla Corrias. On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 629-650. doi: 10.3934/dcdsb.2014.19.629 |
[14] |
Lican Kang, Yanming Lai, Yanyan Liu, Yuan Luo, Jing Zhang. High-dimensional linear regression with hard thresholding regularization: Theory and algorithm. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022034 |
[15] |
Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure and Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036 |
[16] |
N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050 |
[17] |
Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549 |
[18] |
Sun-Yung Alice Chang, Yu Yuan. A Liouville problem for the Sigma-2 equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 659-664. doi: 10.3934/dcds.2010.28.659 |
[19] |
Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184 |
[20] |
Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]