# American Institute of Mathematical Sciences

March  2011, 4(1): 333-344. doi: 10.3934/krm.2011.4.333

## On the Kac model for the Landau equation

 1 Laboratoire de Mathématiques, Université Paris-Sud 11, bât. 425, 91405 Orsay, France 2 Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza - Roma, P.le A. Moro, 5 00185 Roma, Italy, Italy

Received  October 2010 Revised  October 2010 Published  January 2011

We introduce a $N$-particle system which approximates, in the mean-field limit, the solutions of the Landau equation with Coulomb singularity. This model plays the same role as the Kac's model for the homogeneous Boltzmann equation. We use compactness arguments following [11].
Citation: Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333
##### References:
 [1] A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian), Mat. Sb., 181 (1992), 435-446; translation in Math. USSR-Sb., 69 (1991), 465-478. [2] R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'' John Wiley & Sons, New-York, 1975. [3] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298. doi: 10.1080/03605300008821513. [4] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512. [5] T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751-776. doi: 10.1007/BF02765543. [6] M. Kac, Foundations of kinetic theory, in "Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability," University of California Press, Berkeley and Los Angeles (1956). [7] A. I. Khinchin, "Mathematical Foundations of Information Theory," New York: Dover, 1957. [8] L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10," Pergamon Press, Oxford-Elmsford, N.Y. 1981. [9] R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit, J. Stat. Phys., 136 (2009), 1105-1130. doi: 10.1007/s10955-009-9820-3. [10] M. Pulvirenti, The weak-coupling limit of large classical and quantum systems, in "International Congress of Mathematicians," Eur. Math. Soc., Zürich (2006). [11] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

show all references

##### References:
 [1] A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian), Mat. Sb., 181 (1992), 435-446; translation in Math. USSR-Sb., 69 (1991), 465-478. [2] R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'' John Wiley & Sons, New-York, 1975. [3] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298. doi: 10.1080/03605300008821513. [4] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512. [5] T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751-776. doi: 10.1007/BF02765543. [6] M. Kac, Foundations of kinetic theory, in "Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability," University of California Press, Berkeley and Los Angeles (1956). [7] A. I. Khinchin, "Mathematical Foundations of Information Theory," New York: Dover, 1957. [8] L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10," Pergamon Press, Oxford-Elmsford, N.Y. 1981. [9] R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit, J. Stat. Phys., 136 (2009), 1105-1130. doi: 10.1007/s10955-009-9820-3. [10] M. Pulvirenti, The weak-coupling limit of large classical and quantum systems, in "International Congress of Mathematicians," Eur. Math. Soc., Zürich (2006). [11] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.
 [1] Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 [2] Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061 [3] Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic and Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027 [4] Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1 [5] Nicolas Fournier. Particle approximation of some Landau equations. Kinetic and Related Models, 2009, 2 (3) : 451-464. doi: 10.3934/krm.2009.2.451 [6] Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic and Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557 [7] Cédric Bernardin, Valeria Ricci. A simple particle model for a system of coupled equations with absorbing collision term. Kinetic and Related Models, 2011, 4 (3) : 633-668. doi: 10.3934/krm.2011.4.633 [8] Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems and Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042 [9] Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic and Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008 [10] Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic and Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025 [11] Dejian Chang, Huili Liu, Jie Xiong. A branching particle system approximation for a class of FBSDEs. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 9-. doi: 10.1186/s41546-016-0007-y [12] Rafael Sanabria. Inelastic Boltzmann equation driven by a particle thermal bath. Kinetic and Related Models, 2021, 14 (4) : 639-679. doi: 10.3934/krm.2021018 [13] Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011 [14] Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007 [15] Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915 [16] Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic and Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479 [17] Yuri Kozitsky, Krzysztof Pilorz. Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 725-752. doi: 10.3934/dcds.2020059 [18] Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5481-5502. doi: 10.3934/dcdsb.2019067 [19] Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks and Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31 [20] Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

2021 Impact Factor: 1.398