Citation: |
[1] |
Håkan Andréasson, Regularity of the gain term and strong $L^1$ convergence to equilibrium for the relativistic Boltzmann equation, SIAM J. Math. Anal., 27 (1996), 1386-1405.doi: 10.1137/0527076. |
[2] |
Håkan Andréasson, Simone Calogero and Reinhard Illner, On blowup for gain-term-only classical and relativistic Boltzmann equations, Math. Methods Appl. Sci., 27 (2004), 2231-2240.doi: 10.1002/mma.555. |
[3] |
Klaus Bichteler, On the Cauchy problem of the relativistic Boltzmann equation, Comm. Math. Phys., 4 (1967), 352-364.doi: 10.1007/BF01653649. |
[4] |
B. Boisseau and W. A. van Leeuwen, Relativistic Boltzmann theory in $D+1$ spacetime dimensions, Ann. Physics, 195 (1989), 376-419.doi: 10.1016/0003-4916(89)90249-2. |
[5] |
Simone Calogero, The Newtonian limit of the relativistic Boltzmann equation, J. Math. Phys., 45 (2004), 4042-4052.doi: 10.1063/1.1793328. |
[6] |
C. Cercignani and G. M. Kremer, On relativistic collisional invariants, J. Statist. Phys., 96 (1999), 439-445.doi: 10.1023/A:1004545104959. |
[7] |
C. Cercignani and G. M.Kremer, Trend to equilibrium of a degenerate relativistic gas, J. Statist. Phys., 98 (2000), 441-456.doi: 10.1023/A:1018695426728. |
[8] |
C. Cercignani and G. M. Kremer, Dispersion and absorption of plane harmonic waves in a relativistic gas, Contin. Mech. Thermodyn., 13 (2001), 171-182. |
[9] |
C. Cercignani and G. M.Kremer, Moment closure of the relativistic Anderson and Witting model equation, Phys. A, 290 (2001), 192-202.doi: 10.1016/S0378-4371(00)00403-9. |
[10] |
Carlo Cercignani, Speed of propagation of infinitesimal disturbances in a relativistic gas, Phys. Rev. Lett., 50 (1983), 1122-1124.doi: 10.1103/PhysRevLett.50.1122. |
[11] |
Carlo Cercignani, Propagation phenomena in classical and relativistic rarefied gases, Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998), 29 (2000), 607-614. |
[12] |
Carlo Cercignani, Reinhard Illner and Mario Pulvirenti, "The mathematical Theory of Dilute Gases," Applied Mathematical Sciences, Springer-Verlag, New York, volume 106, 1994. |
[13] |
Carlo Cercignani and Gilberto Medeiros Kremer, "The Relativistic Boltzmann Equation: Theory and Applications," Progress in Mathematical Physics, Birkhäuser Verlag, Basel, 22, 2002. |
[14] |
Carlo Cercignani and Armando Majorana, Propagation of infinitesimal disturbances in a gas according to a relativistic kinetic model, Meccanica, 19 (1984), 175-181.doi: 10.1007/BF01743729. |
[15] |
S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, "Relativistic Kinetic Theory," Principles and applications, North-Holland Publishing Co., Amsterdam, 1980. |
[16] |
J. J. Dijkstra and W. A. van Leeuwen, Mathematical aspects of relativistic kinetic theory, Phys. A, 90 (1978), 450-486.doi: 10.1016/0378-4371(78)90004-3. |
[17] |
R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2), 130 (1989), 321-366.doi: 10.2307/1971423. |
[18] |
Marek Dudyński, On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics, J. Statist. Phys., 57 (1989), 199-245.doi: 10.1007/BF01023641. |
[19] |
Marek Dudyński and Maria L. Ekiel-Jeżewska, Causality of the linearized relativistic Boltzmann equation, Phys. Rev. Lett., 55 (1985), 2831-2834.doi: 10.1103/PhysRevLett.55.2831. |
[20] |
Marek Dudyński and Maria L. Ekiel-Jeżewska, Errata: "Causality of the linearized relativistic Boltzmann equation'', Investigación Oper., 6 (1985), 2228. |
[21] |
Marek Dudyński and Maria L. Ekiel-Jeżewska, On the linearized relativistic Boltzmann equation. I. Existence of solutions, Comm. Math. Phys., 115 (1988), 607-629. |
[22] |
Marek Dudyński and Maria L. Ekiel-Jeżewska, Global existence proof for relativistic Boltzmann equation, J. Statist. Phys., 66 (1992), 991-1001.doi: 10.1007/BF01055712. |
[23] |
Marek Dudyński and Maria L. Ekiel-Jeżewska, The relativistic Boltzmann equation - mathematical and physical aspects, J. Tech. Phys., 48 (2007), 39-47. |
[24] |
Robert T. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, |
[25] |
Robert T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data, Comm. Math. Phys., 264 (2006), 705-724.doi: 10.1007/s00220-006-1522-y. |
[26] |
Robert T. Glassey and Walter A. Strauss, On the derivatives of the collision map of relativistic particles, Transport Theory Statist. Phys., 20 (1991), 55-68.doi: 10.1080/00411459108204708. |
[27] |
Robert T. Glassey and Walter A. Strauss, Asymptotic stability of the relativistic Maxwellian, Publ. Res. Inst. Math. Sci., 29 (1993), 301-347. |
[28] |
Robert T. Glassey and Walter A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments, Transport Theory Statist. Phys., 24 (1995), 657-678.doi: 10.1080/00411459508206020. |
[29] |
Yan Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.doi: 10.1007/s00222-003-0301-z. |
[30] |
Yan Guo and Robert M. Strain, Momentum Regularity and Stability of the Relativistic Vlasov-Maxwell-Boltzmann System, (2010), preprint, arXiv:1012.1158v1. |
[31] |
Seung-Yeal Ha, Yong Duck Kim, Ho Lee and Se Eun Noh, Asymptotic completeness for relativistic kinetic equations with short-range interaction forces, Methods Appl. Anal., 14 (2007), 251-262. |
[32] |
Seung-Yeal Ha, Ho Lee, Xiongfeng Yang and Seok-Bae Yun, Uniform $L^2$-stability estimates for the relativistic Boltzmann equation, J. Hyperbolic Differ. Equ., 6 (2009), 295-312.doi: 10.1142/S0219891609001848. |
[33] |
Ling Hsiao and Hongjun Yu, Asymptotic stability of the relativistic Maxwellian, Math. Methods Appl. Sci., 29 (2006), 1481-1499.doi: 10.1002/mma.736. |
[34] |
Ling Hsiao and Hongjun Yu, Global classical solutions to the initial value problem for the relativistic Landau equation, J. Differential Equations, 228 (2006), 641-660.doi: 10.1016/j.jde.2005.10.022. |
[35] |
Zhenglu Jiang, On the relativistic Boltzmann equation, Acta Math. Sci. (English Ed.), 18 (1998), 348-360. |
[36] |
Zhenglu Jiang, On the Cauchy problem for the relativistic Boltzmann equation in a periodic box: global existence, Transport Theory Statist. Phys., 28 (1999), 617-628.doi: 10.1080/00411459908214520. |
[37] |
André Lichnerowicz and Raymond Marrot, Propriétés statistiques des ensembles de particules en relativité restreinte, C. R. Acad. Sci. Paris, 210 (1940), 759-761. |
[38] |
P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461. |
[39] |
Jared Speck and Robert M. Strain, Hilbert Expansion from the Boltzmann equation to relativistic Fluids, in press 2010, Comm. Math. Phys., 49pp, arXiv:1009.5033v1. |
[40] |
J. M. Stewart, "Non-equilibrium Relativistic Kinetic Theory," volume 10 of Lectures Notes in Physics, Springer-Verlag, Berlin, 1971. |
[41] |
Robert Strain, Asymptotic stability of the relativistic Boltzmann equation for the Soft Potentials, Comm. Math. Phys., 300 (2010), 529-597. |
[42] |
Robert M. Strain, Global Newtonian limit for the relativistic Boltzmann equation near vacuum, SIAM J. Math. Anal., 42 (2010), 1568-1601, arXiv:1004.5407v1. |
[43] |
Robert M. Strain, "An Energy Method In Collisional Kinetic Theory," Ph.D. thesis, Division of Applied Mathematics at Brown University in Providence, RI, May 2005. |
[44] |
Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320.doi: 10.1007/s00220-004-1151-2. |
[45] |
J. L. Synge, "The Relativistic Gas," North-Holland Publishing Company, Amsterdam, 1957, |
[46] |
Stephen Weinberg, "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity," Wiley, New York, 1972. |
[47] |
Bernt Wennberg, The geometry of binary collisions and generalized Radon transforms, Arch. Rational Mech. Anal., 139 (1997), 291-302.doi: 10.1007/s002050050054. |
[48] |
Tong Yang and Hongjun Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560.doi: 10.1016/j.jde.2009.11.027. |
[49] |
Hongjun Yu, Smoothing effects for classical solutions of the relativistic Landau-Maxwell system, J. Differential Equations, 246 (2009), 3776-3817.doi: 10.1016/j.jde.2009.02.021. |