- Previous Article
- KRM Home
- This Issue
-
Next Article
Non-Newtonian Couette-Poiseuille flow of a dilute gas
Heisenberg picture of quantum kinetic evolution in mean-field limit
1. | Institute of Mathematics of NAS of Ukraine, 3, Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine |
References:
[1] |
C. Cercignani, "The Boltzmann Equation And Its Applications," Springer-Verlag, 1987. |
[2] |
C. Cercignani, "Mathematical Methods in Kinetic Theory," Springer-Verlag, 1990. |
[3] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994. |
[4] |
C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations," Kluwer Acad. Publ., 1997. |
[5] |
R. Adami, F. Golse and A. Teta, Rigorous derivation of the cubic NLS in dimension one, Journal of Statistical Physics, 127 (2007), 1193-1220.
doi: 10.1007/s10955-006-9271-z. |
[6] |
A. Arnold, Mathematical properties of quantum evolution equation, Lecture Notes in Mathematics, 1946 (2008), 45-109.
doi: 10.1007/978-3-540-79574-2. |
[7] |
C. Bardos, F. Golse, A. D. Gottlieb and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, Journal de Mathématiques Pures et Appliqués, 82 (2003), 665-683.
doi: 10.1016/S0021-7824(03)00023-0. |
[8] |
J. Fröhlich, S. Graffi and S. Schwarz, Mean-field and classical limit of many-body Schrödinger dynamics for bosons, Communications in Mathematical Physics, 271 (2007), 681-697.
doi: 10.1007/s00220-007-0207-5. |
[9] |
A. Michelangeli, Strengthened convergence of marginals to the cubic nonlinear Schrödinger equation, Kinetic and Related Models, 3 (2010), 457–-471.
doi: 10.3934/krm.2010.3.457. |
[10] |
F. Pezzotti and M. Pulvirenti, Mean-field limit and semiclassical expansion of quantum particle system, Annales Henri Poincaré, 10 (2009), 145-187.
doi: 10.1007/s00023-009-0404-1. |
[11] |
D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, A short review on the derivation of the nonlinear quantum Boltzmann equations, Communications in Mathematical Sciences, 5 (2007), 55-71. |
[12] |
L. Erdös, M. Salmhofer and H.-T. Yau, On the quantum Boltzmann equation, Journal of Statistical Physics, 116 (2004), 367-380.
doi: 10.1023/B:JOSS.0000037224.56191.ed. |
[13] |
G. Borgioli and V. I. Gerasimenko, Initial-value problem of the quantum dual BBGKY hierarchy, Nuovo Cimento, 33 C (2010), 71-78.
doi: 10.1393/ncc/i2010-10564-6. |
[14] |
G. Borgioli and V. I. Gerasimenko, The dual BBGKY hierarchy for the evolution of observables, Riv. Mat. Univ. Parma, 4 (2001), 251-267.
doi: 10.1393/ncc/i2010-10564-6. |
[15] |
M. M. Bogolyubov, "Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems," (Ukrainian) Rad. Shkola, 1949. |
[16] |
H. Spohn, Kinetic equations from Hamiltonian dynamics, Reviews of Modern Physics, 52 (1980), 569-615.
doi: 10.1103/RevModPhys.52.569. |
[17] |
R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," 5, Springer-Verlag, 1992. |
[18] |
D. Ya. Petrina, "Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems," Kluwer Acad. Publ., 1995. |
[19] |
V. I. Gerasimenko and V. O. Shtyk, Evolution of correlations of quantum many-particle systems, J. Stat. Mech. Theory Exp., 3 (2008), P03007.
doi: 10.1088/1742-5468/2008/03/P03007. |
[20] |
O. Bratelli and D. W. Robinson, "Operator Algebras and Quantum Statistical Mechanics," 2, Springer, 1997. |
[21] |
V. I. Gerasimenko, Groups of operators for evolution equations of quantum many-particle systems, Operator Theory: Adv. and Appl., 191 (2009), 341-355. |
[22] |
V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions, J. Phys. A: Math. Gen., 37 (2004), 9861-9872.
doi: 10.1088/0305-4470/37/42/002. |
[23] |
J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer, 2006. |
[24] |
V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation, J. Phys. A: Math. Theor., v. 43, 485203 (19pp), 2010.
doi: 10.1088/1751-8113/43/48/485203. |
[25] |
V. I. Gerasimenko and D. O. Polishchuk, Dynamics of correlations of Bose and Fermi particles, Math. Meth. Appl. Sci., 33 (2011), 76-93.
doi: 10.1002/mma.1336. |
show all references
References:
[1] |
C. Cercignani, "The Boltzmann Equation And Its Applications," Springer-Verlag, 1987. |
[2] |
C. Cercignani, "Mathematical Methods in Kinetic Theory," Springer-Verlag, 1990. |
[3] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994. |
[4] |
C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations," Kluwer Acad. Publ., 1997. |
[5] |
R. Adami, F. Golse and A. Teta, Rigorous derivation of the cubic NLS in dimension one, Journal of Statistical Physics, 127 (2007), 1193-1220.
doi: 10.1007/s10955-006-9271-z. |
[6] |
A. Arnold, Mathematical properties of quantum evolution equation, Lecture Notes in Mathematics, 1946 (2008), 45-109.
doi: 10.1007/978-3-540-79574-2. |
[7] |
C. Bardos, F. Golse, A. D. Gottlieb and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, Journal de Mathématiques Pures et Appliqués, 82 (2003), 665-683.
doi: 10.1016/S0021-7824(03)00023-0. |
[8] |
J. Fröhlich, S. Graffi and S. Schwarz, Mean-field and classical limit of many-body Schrödinger dynamics for bosons, Communications in Mathematical Physics, 271 (2007), 681-697.
doi: 10.1007/s00220-007-0207-5. |
[9] |
A. Michelangeli, Strengthened convergence of marginals to the cubic nonlinear Schrödinger equation, Kinetic and Related Models, 3 (2010), 457–-471.
doi: 10.3934/krm.2010.3.457. |
[10] |
F. Pezzotti and M. Pulvirenti, Mean-field limit and semiclassical expansion of quantum particle system, Annales Henri Poincaré, 10 (2009), 145-187.
doi: 10.1007/s00023-009-0404-1. |
[11] |
D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, A short review on the derivation of the nonlinear quantum Boltzmann equations, Communications in Mathematical Sciences, 5 (2007), 55-71. |
[12] |
L. Erdös, M. Salmhofer and H.-T. Yau, On the quantum Boltzmann equation, Journal of Statistical Physics, 116 (2004), 367-380.
doi: 10.1023/B:JOSS.0000037224.56191.ed. |
[13] |
G. Borgioli and V. I. Gerasimenko, Initial-value problem of the quantum dual BBGKY hierarchy, Nuovo Cimento, 33 C (2010), 71-78.
doi: 10.1393/ncc/i2010-10564-6. |
[14] |
G. Borgioli and V. I. Gerasimenko, The dual BBGKY hierarchy for the evolution of observables, Riv. Mat. Univ. Parma, 4 (2001), 251-267.
doi: 10.1393/ncc/i2010-10564-6. |
[15] |
M. M. Bogolyubov, "Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems," (Ukrainian) Rad. Shkola, 1949. |
[16] |
H. Spohn, Kinetic equations from Hamiltonian dynamics, Reviews of Modern Physics, 52 (1980), 569-615.
doi: 10.1103/RevModPhys.52.569. |
[17] |
R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," 5, Springer-Verlag, 1992. |
[18] |
D. Ya. Petrina, "Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems," Kluwer Acad. Publ., 1995. |
[19] |
V. I. Gerasimenko and V. O. Shtyk, Evolution of correlations of quantum many-particle systems, J. Stat. Mech. Theory Exp., 3 (2008), P03007.
doi: 10.1088/1742-5468/2008/03/P03007. |
[20] |
O. Bratelli and D. W. Robinson, "Operator Algebras and Quantum Statistical Mechanics," 2, Springer, 1997. |
[21] |
V. I. Gerasimenko, Groups of operators for evolution equations of quantum many-particle systems, Operator Theory: Adv. and Appl., 191 (2009), 341-355. |
[22] |
V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions, J. Phys. A: Math. Gen., 37 (2004), 9861-9872.
doi: 10.1088/0305-4470/37/42/002. |
[23] |
J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer, 2006. |
[24] |
V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation, J. Phys. A: Math. Theor., v. 43, 485203 (19pp), 2010.
doi: 10.1088/1751-8113/43/48/485203. |
[25] |
V. I. Gerasimenko and D. O. Polishchuk, Dynamics of correlations of Bose and Fermi particles, Math. Meth. Appl. Sci., 33 (2011), 76-93.
doi: 10.1002/mma.1336. |
[1] |
Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic and Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443 |
[2] |
Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 |
[3] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011 |
[4] |
Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040 |
[5] |
Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492 |
[6] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021 |
[7] |
Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596 |
[8] |
Thibaut Allemand. Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kinetic and Related Models, 2009, 2 (2) : 379-402. doi: 10.3934/krm.2009.2.379 |
[9] |
Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292 |
[10] |
Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic and Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517 |
[11] |
Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845 |
[12] |
Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic and Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049 |
[13] |
Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic and Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165 |
[14] |
Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013 |
[15] |
Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1 |
[16] |
Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063 |
[17] |
Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119 |
[18] |
Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1 |
[19] |
Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86. |
[20] |
James B. Kennedy, Jonathan Rohleder. On the hot spots of quantum graphs. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3029-3063. doi: 10.3934/cpaa.2021095 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]