\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a model for mass aggregation with maximal size

Abstract Related Papers Cited by
  • We study a kinetic mean-field equation for a system of particles with different sizes, in which particles are allowed to coagulate only if their sizes sum up to a prescribed time-dependent value. We prove well-posedness of this model, study the existence of self-similar solutions, and analyze the large-time behavior mostly by numerical simulations. Depending on the parameter $k_0$, which controls the probability of coagulation, we observe two different scenarios: For $k_0>2$ there exist two self-similar solutions to the mean field equation, of which one is unstable. In numerical simulations we observe that for all initial data the rescaled solutions converge to the stable self-similar solution. For $k_0<2$, however, no self-similar behavior occurs as the solutions converge in the original variables to a limit that depends strongly on the initial data. We prove rigorously a corresponding statement for $k_0\in (0,1/3)$. Simulations for the cross-over case $k_0=2$ are not completely conclusive, but indicate that, depending on the initial data, part of the mass evolves in a self-similar fashion whereas another part of the mass remains in the small particles.
    Mathematics Subject Classification: Primary: 45K05; Secondary: 82C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Boudaoud, J. Bico and B. Roman, Elastocapillary coalescence: Aggregation and fragmentation with maximal size, Phys. Rev. E, 76 (2007), 060102.doi: 10.1103/PhysRevE.76.060102.

    [2]

    R. L. Drake, A general mathematical survey of the coagulation equation, In G. M. Hidy and J. R. Brock eds., "Topics in current aerosol research (Part 2)"; International reviews in Aerosol Physics and Chemistry, Pergamon (1972), 201-376

    [3]

    M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problems for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.

    [4]

    N. Fournier and P. Laurençot, Existence of self-similar solutions to Smoluchowski's coagulation equation, Comm. Math. Phys., 256 (2005) 589-609.doi: 10.1007/s00220-004-1258-5.

    [5]

    N. Fournier and P. Laurençot, Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels, J. Funct. Anal., 233 (2006) 351-379.doi: 10.1016/j.jfa.2005.07.013.

    [6]

    S. K. Friedlander, "Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics," Wiley, New York, 1977.

    [7]

    T. Gallay and A. Mielke, Convergence results for a coarsening model using global linearization, J. Nonlinear Science, 13 (2003), 311-346.doi: 10.1007/s00332-002-0543-8.

    [8]

    F. Leyvraz, Scaling theory and exactly solvable models in the kinetics of irreversible aggregation, Phys. Reports, 383 (2003), 95-212.doi: 10.1016/S0370-1573(03)00241-2.

    [9]

    G. Menon and R. L. Pego, Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math., 57 (2004), 1197-1232.doi: 10.1002/cpa.3048.

    [10]

    G. Menon, B. Niethammer and R. L. Pego, Dynamics and self-similarity in min-driven clustering, Trans. AMS, 362 (2010), 6551-6590.doi: 10.1090/S0002-9947-2010-05085-8.

    [11]

    M. Smoluchowski, Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen, Phys. Zeitschr., 17 (1916), 557-599.

    [12]

    R. M. Ziff, Kinetics of polymerization, J. Statist. Phys., 23 (1980), 241-263.doi: 10.1007/BF01012594.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return