• Previous Article
    An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits
  • KRM Home
  • This Issue
  • Next Article
    On a relativistic Fokker-Planck equation in kinetic theory
June  2011, 4(2): 427-439. doi: 10.3934/krm.2011.4.427

On a model for mass aggregation with maximal size

1. 

Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, Netherlands

2. 

Department of Mathematics, Saarland University, 66123 Saarbrücken, Germany

3. 

Oxford Centre of Nonlinear PDE, Mathematical Insitute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom

4. 

School of Computer and Communication Sciences, École polytechnique fédérale de Lausanne, CH - 1015 Lausanne, Switzerland

Received  October 2010 Revised  December 2010 Published  April 2011

We study a kinetic mean-field equation for a system of particles with different sizes, in which particles are allowed to coagulate only if their sizes sum up to a prescribed time-dependent value. We prove well-posedness of this model, study the existence of self-similar solutions, and analyze the large-time behavior mostly by numerical simulations. Depending on the parameter $k_0$, which controls the probability of coagulation, we observe two different scenarios: For $k_0>2$ there exist two self-similar solutions to the mean field equation, of which one is unstable. In numerical simulations we observe that for all initial data the rescaled solutions converge to the stable self-similar solution. For $k_0<2$, however, no self-similar behavior occurs as the solutions converge in the original variables to a limit that depends strongly on the initial data. We prove rigorously a corresponding statement for $k_0\in (0,1/3)$. Simulations for the cross-over case $k_0=2$ are not completely conclusive, but indicate that, depending on the initial data, part of the mass evolves in a self-similar fashion whereas another part of the mass remains in the small particles.
Citation: Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic and Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427
References:
[1]

A. Boudaoud, J. Bico and B. Roman, Elastocapillary coalescence: Aggregation and fragmentation with maximal size, Phys. Rev. E, 76 (2007), 060102. doi: 10.1103/PhysRevE.76.060102.

[2]

R. L. Drake, A general mathematical survey of the coagulation equation, In G. M. Hidy and J. R. Brock eds., "Topics in current aerosol research (Part 2)"; International reviews in Aerosol Physics and Chemistry, Pergamon (1972), 201-376

[3]

M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problems for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.

[4]

N. Fournier and P. Laurençot, Existence of self-similar solutions to Smoluchowski's coagulation equation, Comm. Math. Phys., 256 (2005) 589-609. doi: 10.1007/s00220-004-1258-5.

[5]

N. Fournier and P. Laurençot, Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels, J. Funct. Anal., 233 (2006) 351-379. doi: 10.1016/j.jfa.2005.07.013.

[6]

S. K. Friedlander, "Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics," Wiley, New York, 1977.

[7]

T. Gallay and A. Mielke, Convergence results for a coarsening model using global linearization, J. Nonlinear Science, 13 (2003), 311-346. doi: 10.1007/s00332-002-0543-8.

[8]

F. Leyvraz, Scaling theory and exactly solvable models in the kinetics of irreversible aggregation, Phys. Reports, 383 (2003), 95-212. doi: 10.1016/S0370-1573(03)00241-2.

[9]

G. Menon and R. L. Pego, Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math., 57 (2004), 1197-1232. doi: 10.1002/cpa.3048.

[10]

G. Menon, B. Niethammer and R. L. Pego, Dynamics and self-similarity in min-driven clustering, Trans. AMS, 362 (2010), 6551-6590. doi: 10.1090/S0002-9947-2010-05085-8.

[11]

M. Smoluchowski, Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen, Phys. Zeitschr., 17 (1916), 557-599.

[12]

R. M. Ziff, Kinetics of polymerization, J. Statist. Phys., 23 (1980), 241-263. doi: 10.1007/BF01012594.

show all references

References:
[1]

A. Boudaoud, J. Bico and B. Roman, Elastocapillary coalescence: Aggregation and fragmentation with maximal size, Phys. Rev. E, 76 (2007), 060102. doi: 10.1103/PhysRevE.76.060102.

[2]

R. L. Drake, A general mathematical survey of the coagulation equation, In G. M. Hidy and J. R. Brock eds., "Topics in current aerosol research (Part 2)"; International reviews in Aerosol Physics and Chemistry, Pergamon (1972), 201-376

[3]

M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problems for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.

[4]

N. Fournier and P. Laurençot, Existence of self-similar solutions to Smoluchowski's coagulation equation, Comm. Math. Phys., 256 (2005) 589-609. doi: 10.1007/s00220-004-1258-5.

[5]

N. Fournier and P. Laurençot, Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels, J. Funct. Anal., 233 (2006) 351-379. doi: 10.1016/j.jfa.2005.07.013.

[6]

S. K. Friedlander, "Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics," Wiley, New York, 1977.

[7]

T. Gallay and A. Mielke, Convergence results for a coarsening model using global linearization, J. Nonlinear Science, 13 (2003), 311-346. doi: 10.1007/s00332-002-0543-8.

[8]

F. Leyvraz, Scaling theory and exactly solvable models in the kinetics of irreversible aggregation, Phys. Reports, 383 (2003), 95-212. doi: 10.1016/S0370-1573(03)00241-2.

[9]

G. Menon and R. L. Pego, Approach to self-similarity in Smoluchowski's coagulation equations, Comm. Pure Appl. Math., 57 (2004), 1197-1232. doi: 10.1002/cpa.3048.

[10]

G. Menon, B. Niethammer and R. L. Pego, Dynamics and self-similarity in min-driven clustering, Trans. AMS, 362 (2010), 6551-6590. doi: 10.1090/S0002-9947-2010-05085-8.

[11]

M. Smoluchowski, Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen, Phys. Zeitschr., 17 (1916), 557-599.

[12]

R. M. Ziff, Kinetics of polymerization, J. Statist. Phys., 23 (1980), 241-263. doi: 10.1007/BF01012594.

[1]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[2]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[3]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[4]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[5]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[6]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[7]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[8]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[9]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[10]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations and Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[11]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[12]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[13]

Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785

[14]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[15]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[16]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[17]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4823-4846. doi: 10.3934/dcds.2021059

[18]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[19]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[20]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

[Back to Top]