\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits

Abstract Related Papers Cited by
  • In this work, we extend the micro-macro decomposition based numerical schemes developed in [3] to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics. In doing so, we first write the Vlasov-Poisson model as a system that couples the macroscopic (equilibrium) part with the remainder part. A suitable discretization of this micro-macro model enables to derive an asymptotic preserving scheme in the diffusion and high-field asymptotics. In addition, two main improvements are presented: On the one hand a self-consistent electric field is introduced, which induces a specific discretization in the velocity direction, and represents a wide range of applications in plasma physics. On the other hand, as suggested in [30], we introduce a suitable reformulation of the micro-macro scheme which leads to an asymptotic preserving property with the following property: It degenerates into an implicit scheme for the diffusion limit model when $\varepsilon\rightarrow 0$, which makes it free from the usual diffusion constraint $\Delta t=O(\Delta x^2)$ in all regimes. Numerical examples are used to demonstrate the efficiency and the applicability of the schemes for both regimes.
    Mathematics Subject Classification: 65M06, 35B25, 82C80, 82D10, 41A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Arnold, J.-A. Carrillo, I. Gamba and C.-W. Shu, Low and high-field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck system, Transport Theory Statist. Phys., 30 (2001), 121-153.doi: 10.1081/TT-100105365.

    [2]

    R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendr焎ker, An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit, J. Sc. Comput., 41 (2009), 341-365.doi: 10.1007/s10915-009-9302-4.

    [3]

    M. Benoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., 227 (2008), 3781-3803.doi: 10.1016/j.jcp.2007.11.032.

    [4]

    L. L. Bonilla and J. SolerHigh-field limit of the Vlasov-Poisson-Fokker-Planck system for different perturbation methods, http://arxiv.org/abs/cond-mat/0007164.

    [5]

    M. Bostan and T. Goudon, Electric high-electric field limit for the Vlasov-Maxwell-Fokker-Planck system, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 25 (2008), 221-251.

    [6]

    J. F. Bourgat, P. LeTallec, B. Perthame and Y. Qiu, Coupling Boltzmann and Euler equations without overlapping, Domain decomposition and Engineering, Contemporary Mathematics, AMS, 157 (1992), 377-398.

    [7]

    C. Buet and S. Cordier, Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation, SIAM J. Numer. Anal., 36 (1998), 953-973.doi: 10.1137/S0036142997322102.

    [8]

    J. A. Carrillo, T. Goudon, P. Lafitte and F. Vecil, Numerical schemes of diffusion asymptotics and moment closures for kinetic equations, J. Sci. Comput., 36 (2008), 113-149.doi: 10.1007/s10915-007-9181-5.

    [9]

    S. Chandrasekhar, "Radiative Transfer," Dover Publications, New-York, 1960.

    [10]

    N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation, J. Comput. Phys., 199 (2004), 776-808.doi: 10.1016/j.jcp.2004.03.007.

    [11]

    N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equations, J. Comput. Phys., 203 (2005), 572-601.doi: 10.1016/j.jcp.2004.09.006.

    [12]

    P. Degond, F. Deluzet, L. Navoret, A-B. Sun and M-H.Vignal, Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality, J. Comput. Phys., 229 (2010), 5630-5652.doi: 10.1016/j.jcp.2010.04.001.

    [13]

    P. Degond, G. Dimarco and L. Mieussens, A multiscale kinetic-fluid solver with dynamic localization of kinetic effects, J. Comput. Phys., 229 (2010), 4907-4933.doi: 10.1016/j.jcp.2010.03.009.

    [14]

    P. Degond, J.-G. Liu and L. Mieussens, Macroscopic fluid models with localized kinetic upscaling effects, SIAM J. Multiscale Modeling and Simulations, 5 (2006), 940-979.doi: 10.1137/060651574.

    [15]

    P. Degond and B. Lucquin-Desreux, An entropy scheme for the Fokker-Planck collision operator in the Coulomb case, Numer. Math., 68 (1994), 239-262.doi: 10.1007/s002110050059.

    [16]

    R. Duclous, B. Dubroca and F. FilbetAnalysis of a high order finite volume scheme for the Vlasov-Poisson system, preprint.

    [17]

    F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources, J. Comp. Phys., 229 (2010), 7625-7648.doi: 10.1016/j.jcp.2010.06.017.

    [18]

    F. Golse and A. Klar, A numerical method for computing asymptotic states and outgoing distributions for a kinetic linear half space problem, J. Stat. Phys., 80 (1995), 1033-1061.doi: 10.1007/BF02179863.

    [19]

    L. Gosse and G. Toscani, Asymptotic-preserving and well-balanced schemes for radiative transfer and the Rosseland approximation, Numer. Math., 98 (2004), 223-250.doi: 10.1007/s00211-004-0533-x.

    [20]

    S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454.doi: 10.1137/S1064827598334599.

    [21]

    S. Jin and D. Levermore, The discrete-ordinate method in diffusive regimes, Transport Theory Stat. Phys., 22 (1993), 739-791.doi: 10.1080/00411459308203842.

    [22]

    S. Jin and D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 126 (1996), 449-467.doi: 10.1006/jcph.1996.0149.

    [23]

    S. Jin, L. Pareschi and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Num. Anal., 38 (2000), 913-936.doi: 10.1137/S0036142998347978.

    [24]

    S. Jin and Y. Shi, A micro-macro decomposition based on asymptotic-preserving scheme for the multispecies Boltzmann equation, SIAM J. Sci. Comp., 31 (2010), 4580-4606.doi: 10.1137/090756077.

    [25]

    A. Klar, Asymptotic-induced domain decomposition methods for kinetic and drift diffusion semiconductors equations, SIAM J. Numer. Anal., 19 (1998), 2032-2050.

    [26]

    A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit, SIAM J. Numer. Anal., 35 (1998), 1073-1094.doi: 10.1137/S0036142996305558.

    [27]

    A. Klar, A numerical method for kinetic semiconductor equations in the drift diffusion limit, SIAM J. Sci. Comp., 20 (1999), 1696-1712.doi: 10.1137/S1064827597319258.

    [28]

    A. Klar and C. Schmeiser, Numerical passage from radiative heat transfer to nonlinear diffusion models, Math. Models Methods Appl. Sci., 11 (2001), 749-767.doi: 10.1142/S0218202501001082.

    [29]

    A. Klar and A. Unterreiter, Uniform stability of a finite difference scheme for transport equations in diffusive regimes, SIAM J. Numer. Anal., 40 (2001), 891-913.doi: 10.1137/S0036142900375700.

    [30]

    M. Lemou, Relaxed micro-macro schemes for kinetic equations, Comptes Rendus Mathématique, 348 (2010), 455-460.doi: 10.1016/j.crma.2010.02.017.

    [31]

    M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comp., 31 (2008), 334-368.doi: 10.1137/07069479X.

    [32]

    T.-P. Liu and S.-H. Yu, Boltzmann equation: Micromacro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: 10.1007/s00220-003-1030-2.

    [33]

    G. Naldi and L. Pareschi, Numerical schemes for kinetic equations in diffusive regimes, Appl. Math. Lett., 11 (1998), 29-35.doi: 10.1016/S0893-9659(98)00006-8.

    [34]

    J. C. Mandal and S. M. Deshpande, Kinetic flux vector splitting for Euler equations, Comput. Fluids, 23 (1994), 447-478.doi: 10.1016/0045-7930(94)90050-7.

    [35]

    J. Nieto, F. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal., 158 (2001), 29-59.doi: 10.1007/s002050100139.

    [36]

    F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation, J. Asympt. Anal., 4 (1991), 293-317.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return