• Previous Article
    Validity of the Boltzmann equation with an external force
  • KRM Home
  • This Issue
  • Next Article
    An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits
June  2011, 4(2): 479-497. doi: 10.3934/krm.2011.4.479

On Villani's conjecture concerning entropy production for the Kac Master equation

1. 

Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

Received  September 2010 Revised  February 2011 Published  April 2011

In this paper we take an idea presented in recent paper by Carlen, Carvalho, Le Roux, Loss, and Villani ([3]) and push it one step forward to find an exact estimation on the entropy production. The new estimation essentially proves that Villani's conjecture is correct, or more precisely that a much worse bound to the entropy production is impossible in the general case.
Citation: Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic and Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479
References:
[1]

A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94, (1999), 603-618. doi: 10.1023/A:1004537522686.

[2]

E. A. Carlen, M. C. Carvalho and M. Loss, Many-body aspects of approach to equilibrium, "Séminaire Equations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000),

[3]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinet. Relat. Models, 3 (2010), 85-122. doi: 10.3934/krm.2010.3.85.

[4]

E. Janvresse, Spectral gap for Kac's model of Boltzmann equation, Ann. Probab., 29 (2001), 288-304. doi: 10.1214/aop/1008956330.

[5]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III, pp. 171-197. University of California Press, Berkeley and Los Angeles, 1956.

[6]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490. doi: 10.1007/s00220-002-0777-1.

show all references

References:
[1]

A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94, (1999), 603-618. doi: 10.1023/A:1004537522686.

[2]

E. A. Carlen, M. C. Carvalho and M. Loss, Many-body aspects of approach to equilibrium, "Séminaire Equations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000),

[3]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinet. Relat. Models, 3 (2010), 85-122. doi: 10.3934/krm.2010.3.85.

[4]

E. Janvresse, Spectral gap for Kac's model of Boltzmann equation, Ann. Probab., 29 (2001), 288-304. doi: 10.1214/aop/1008956330.

[5]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III, pp. 171-197. University of California Press, Berkeley and Los Angeles, 1956.

[6]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490. doi: 10.1007/s00220-002-0777-1.

[1]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88.

[4]

Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic and Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012

[5]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[6]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure and Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[7]

Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic and Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277

[8]

Chengzhi Li, Changjian Liu. A proof of a Dumortier-Roussarie's conjecture. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022095

[9]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[10]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123

[13]

Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359

[14]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[15]

Jan Hladký, Diana Piguet, Miklós Simonovits, Maya Stein, Endre Szemerédi. The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs. Electronic Research Announcements, 2015, 22: 1-11. doi: 10.3934/era.2015.22.1

[16]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[17]

Artur O. Lopes, Jairo K. Mengue. On information gain, Kullback-Leibler divergence, entropy production and the involution kernel. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3593-3627. doi: 10.3934/dcds.2022026

[18]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[19]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[20]

Shuhei Hayashi. A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2285-2313. doi: 10.3934/dcds.2020114

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]