March  2011, 4(1): 53-85. doi: 10.3934/krm.2011.4.53

A hierarchy of models related to nanoflows and surface diffusion

1. 

Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501

2. 

Institut de Mathméatiques de Bordeaux, ENSEIRB-MATMECA, IPB, Université de Bordeaux, F-33405 Talence cedex, France

3. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse, F-31062 Toulouse, France

Received  September 2010 Revised  October 2010 Published  January 2011

In last years a great interest was brought to molecular transport problems at nanoscales, such as surface diffusion or molecular flows in nano or sub-nano-channels. In a series of papers V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker proposed to use kinetic theory in order to analyze the mechanisms that determine mobility of molecules in nanoscale channels. This approach proved to be remarkably useful to give new insight on these issues, such as density dependence of the diffusion coefficient. In this paper we revisit these works to derive the kinetic and diffusion models introduced by V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker by using classical tools of kinetic theory such as scaling and systematic asymptotic analysis. Some results are extended to less restrictive hypothesis.
Citation: Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic and Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53
References:
[1]

K. Aoki and P. Degond, Homogenization of a flow in a periodic channel of small section, Multiscale Model. Simul., 1 (2003), 304-334. doi: 10.1137/S1540345902409931.

[2]

K. Aoki, P. Degond, S. Takata and H. Yoshida, Diffusion models for Knudsen compressors, Phys. Fluids, 19 (2007), 117103: 1-20.

[3]

J. J. M. Beenakker, Reduced dimensionality in gases in nanopores, Phys. Low-Dim. Struct., 10/11 (1995), 115-124.

[4]

J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: density dependence in a smooth potential, J. Chem. Phys., 107 (1997), 4015-4023. doi: 10.1063/1.474757.

[5]

J. J. M. Beenakker, V. D. Borman and S. Yu. Krylov, Molecular transport in the nanometer regime, Phys. Rev. Lett., 72 (1994), 514-517. doi: 10.1103/PhysRevLett.72.514.

[6]

J. J. M. Beenakker, V. D. Borman and S. U. Krylov, Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving, Chem. Phys. Letters, 232 (1995), 379-382. doi: 10.1016/0009-2614(94)01372-3.

[7]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Theory of nonequilibrium phenomena at a gas-solid interface, Sov. Phys. JETP, 67 (1988), 2110-2121.

[8]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Fundamental role of unbound surface particles in transport phenomena along a gas-solid interface, Sov. Phys. JETP, 70 (1990), 1013-1022.

[9]

P. Charrier and B. Dubroca, Asymptotic transport models for heat and mass transfer in reactive porous media, Multiscale Model. Simul., 2 (2003), 124-157. doi: 10.1137/S1540345902411736.

[10]

P. Degond, Transport of trapped particles in a surface potential, in "Nonlinear Partial Differential Equations and Their Applications," Collège de France Seminar, North Holland, XIV (2002), 273-296.

[11]

P. Degond, C. Parzani and M.-H. Vignal, A Boltzmann model for trapped particles in a surface potential, Multiscale Model. Simul., 5 (2006), 364-392. doi: 10.1137/050642897.

[12]

E. Frenod and K. Hamdache, Homogenisation of transport kinetic equations with oscillating potentials, Proceedings of the Royal Society of Edinburgh A, 126 (1996), 1247-1275.

[13]

J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy and O. Bakajin, Fast mass transport sub-2-nanometer carbon nanotubes, Science, 312 (2006), 1034-1037. doi: 10.1126/science.1126298.

[14]

G. Karniadakis, A. Beskok and N. Aluru, "Microflows and Nanoflows," Springer-Verlag, 2005.

[15]

S. Yu. Krylov, A. V. Prosyanov and J. J. M. Beenakker, One dimensional surface diffusion. II. Density dependence in a corrugated potential, J. Chem. Phys., 107 (1997), 6970-6979. doi: 10.1063/1.474937.

[16]

S. Yu. Krylov, Molecular transport in sub-nano-scale systems, in "Rarefied Gas Dynamics,'' A. D. Ketsdever and E. P. Muntz (eds.), Am. Inst. Phys., (2002).

[17]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkäuser, 2002.

[18]

Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications," Birkäuser, 2007.

show all references

References:
[1]

K. Aoki and P. Degond, Homogenization of a flow in a periodic channel of small section, Multiscale Model. Simul., 1 (2003), 304-334. doi: 10.1137/S1540345902409931.

[2]

K. Aoki, P. Degond, S. Takata and H. Yoshida, Diffusion models for Knudsen compressors, Phys. Fluids, 19 (2007), 117103: 1-20.

[3]

J. J. M. Beenakker, Reduced dimensionality in gases in nanopores, Phys. Low-Dim. Struct., 10/11 (1995), 115-124.

[4]

J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: density dependence in a smooth potential, J. Chem. Phys., 107 (1997), 4015-4023. doi: 10.1063/1.474757.

[5]

J. J. M. Beenakker, V. D. Borman and S. Yu. Krylov, Molecular transport in the nanometer regime, Phys. Rev. Lett., 72 (1994), 514-517. doi: 10.1103/PhysRevLett.72.514.

[6]

J. J. M. Beenakker, V. D. Borman and S. U. Krylov, Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving, Chem. Phys. Letters, 232 (1995), 379-382. doi: 10.1016/0009-2614(94)01372-3.

[7]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Theory of nonequilibrium phenomena at a gas-solid interface, Sov. Phys. JETP, 67 (1988), 2110-2121.

[8]

V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Fundamental role of unbound surface particles in transport phenomena along a gas-solid interface, Sov. Phys. JETP, 70 (1990), 1013-1022.

[9]

P. Charrier and B. Dubroca, Asymptotic transport models for heat and mass transfer in reactive porous media, Multiscale Model. Simul., 2 (2003), 124-157. doi: 10.1137/S1540345902411736.

[10]

P. Degond, Transport of trapped particles in a surface potential, in "Nonlinear Partial Differential Equations and Their Applications," Collège de France Seminar, North Holland, XIV (2002), 273-296.

[11]

P. Degond, C. Parzani and M.-H. Vignal, A Boltzmann model for trapped particles in a surface potential, Multiscale Model. Simul., 5 (2006), 364-392. doi: 10.1137/050642897.

[12]

E. Frenod and K. Hamdache, Homogenisation of transport kinetic equations with oscillating potentials, Proceedings of the Royal Society of Edinburgh A, 126 (1996), 1247-1275.

[13]

J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy and O. Bakajin, Fast mass transport sub-2-nanometer carbon nanotubes, Science, 312 (2006), 1034-1037. doi: 10.1126/science.1126298.

[14]

G. Karniadakis, A. Beskok and N. Aluru, "Microflows and Nanoflows," Springer-Verlag, 2005.

[15]

S. Yu. Krylov, A. V. Prosyanov and J. J. M. Beenakker, One dimensional surface diffusion. II. Density dependence in a corrugated potential, J. Chem. Phys., 107 (1997), 6970-6979. doi: 10.1063/1.474937.

[16]

S. Yu. Krylov, Molecular transport in sub-nano-scale systems, in "Rarefied Gas Dynamics,'' A. D. Ketsdever and E. P. Muntz (eds.), Am. Inst. Phys., (2002).

[17]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkäuser, 2002.

[18]

Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications," Birkäuser, 2007.

[1]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[2]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[3]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic and Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[4]

Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030

[5]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[6]

Arnaud Debussche, Julien Vovelle. Diffusion limit for a stochastic kinetic problem. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2305-2326. doi: 10.3934/cpaa.2012.11.2305

[7]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[8]

Jeremy LeCrone, Yuanzhen Shao, Gieri Simonett. The surface diffusion and the Willmore flow for uniformly regular hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3503-3524. doi: 10.3934/dcdss.2020242

[9]

Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic and Related Models, 2020, 13 (2) : 345-371. doi: 10.3934/krm.2020012

[10]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic and Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[11]

Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic and Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137

[12]

Ho-Youn Kim, Yong-Jung Kim, Hyun-Jin Lim. Heterogeneous discrete kinetic model and its diffusion limit. Kinetic and Related Models, 2021, 14 (5) : 749-765. doi: 10.3934/krm.2021023

[13]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[14]

José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic and Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

[15]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic and Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[16]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic and Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[17]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[18]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic and Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[19]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[20]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]