Citation: |
[1] |
A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem, Math. Models Methods Appl. Sci., 16 (2006), 1817-1837.doi: 10.1142/S0218202506001728. |
[2] |
A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation, Asympt. Anal., 25 (2001), 39-91. |
[3] |
F. F. Chen, "Introduction to Plasma Physics and Controlled Fusion,'' 2nd edition, Springer, 1984. |
[4] |
S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis of an isothermal Euler-Poisson model, Ann. Fac. Sci. Toulouse Math., 5 (1996), 599-643. |
[5] |
S. Cordier, P. Degond, P. Markowich and C. Schmeiser, Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit, Asymptotic Anal., 11 (1995), 209-240. |
[6] |
P. Degond and P. Markowich, On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett., 3 (1990), 25-29.doi: 10.1016/0893-9659(90)90130-4. |
[7] |
S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics, Comm. Math. Phys., 238 (2003), 149-186. |
[8] |
Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions, Arch. Ration. Mech. Anal., 179 (2006), 1-30.doi: 10.1007/s00205-005-0369-2. |
[9] |
T. Kato, Linear evolution equations of "hyperbolic'' type, J. Math. Soc. Japan., 25 (1973), 648-666.doi: 10.2969/jmsj/02540648. |
[10] |
S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97-127.doi: 10.1007/BF01212358. |
[11] |
S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems, Arch. Ration. Mech. Anal., 170 (2003), 297-329.doi: 10.1007/s00205-003-0273-6. |
[12] |
M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing,'' 2nd edition, Wiley-Interscience, 2005.doi: 10.1002/0471724254. |
[13] |
T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differ. Equ., 241 (2007), 94-111.doi: 10.1016/j.jde.2007.06.016. |
[14] |
S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors, Osaka J. Math., 44 (2007), 639-665. |
[15] |
S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors, Arch. Ration. Mech. Anal., 192 (2009), 187-215.doi: 10.1007/s00205-008-0129-1. |
[16] |
S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors, J. Differ. Equ., 249 (2010), 1385-1409.doi: 10.1016/j.jde.2010.06.008. |
[17] |
M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107-132. |
[18] |
M. Slemrod, The radio-frequency driven plasma sheath: asymptotics and analysis, SIAM J. Appl. Math., 63 (2003), 1737-1763.doi: 10.1137/S0036139902411831. |
[19] |
N. Sternberg and V. A. Godyak, Solving the mathematical model of the electrode sheath in symmetrically driven rf discharges, J. Comput. Phys., 111 (1994), 347-353.doi: 10.1006/jcph.1994.1068. |
[20] |
Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows, Nonlinearity, 17 (2004), 835-849.doi: 10.1088/0951-7715/17/3/006. |
[21] |
K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems, J. Phys. D: Appl. Phys., 24 (1991), 493-518.doi: 10.1088/0022-3727/24/4/001. |
[22] |
M.-H. Vignal, A boundary layer problem for an asymptotic preserving scheme in the quasi-neutral limit for the Euler-Poisson system, SIAM J. Appl. Math., 70 (2010), 1761-1787.doi: 10.1137/070703272. |