September  2011, 4(3): 633-668. doi: 10.3934/krm.2011.4.633

A simple particle model for a system of coupled equations with absorbing collision term

1. 

Université de Lyon and CNRS, UMPA, UMR-CNRS 5669, ENS-Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07, France

2. 

Dipartimento di Metodi e Modelli Matematici, Università di Palermo, Viale delle Scienze Edificio 8, I90128 Palermo, Italy

Received  November 2009 Revised  April 2011 Published  August 2011

We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\varepsilon$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves. We prove the convergence (a.s. w.r.t. the product measure associated to the initial datum for the light particle component) of the densities describing the particle system to the solution of the system of partial differential equations in the asymptotics $ a_n^d n^{-\kappa}\to 0$ and $a_n^d \varepsilon^{\zeta}\to 0$, for $\kappa\in(0,\frac 12)$ and $\zeta\in (0,\frac12 - \frac 1{2d})$, where $a_n^{-1}$ is the effective range of the obstacles and $n$ is the total number of light particles.
Citation: Cédric Bernardin, Valeria Ricci. A simple particle model for a system of coupled equations with absorbing collision term. Kinetic and Related Models, 2011, 4 (3) : 633-668. doi: 10.3934/krm.2011.4.633
References:
[1]

C. Boldrighini, L. A. Bunimovich and Ya. G. Sinaĭ, On the Boltzmann equation for the Lorentz gas, J. Stat. Phys., 32 (1983), 477-501. doi: 10.1007/BF01008951.

[2]

J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas, Commun. Math. Phys., 190 (1998), 491-508. doi: 10.1007/s002200050249.

[3]

L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field, Bull. Sci. Math., 128 (2004), 39-46. doi: 10.1016/j.bulsci.2003.09.003.

[4]

L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic of the Fokker-Planck type in the limit of grazing collisions, J. Stat. Phys., 104 (2001), 1173-1189. doi: 10.1023/A:1010461929872.

[5]

G. Gallavotti, "Rigorous Theory of the Boltzmann Equation in the Lorentz Gas," Nota interna n. 358, Istituto di Fisica, Università di Roma, 1972.

[6]

F. Golse, The mean-field limit for the dynamics of large particle systems, in Journées "Equations aux Dérivées Partielles," Exp. No. IX, 47 pp., Univ. Nantes, Nantes, 2003.

[7]

F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse, Ser.6, 17 (2008), 735-749.

[8]

F. Golse, Recent results on the periodic Lorentz gas, preprint, HAL: hal-00390895, (2009), 1-62.

[9]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," Vol. 2, Functional and Variational Methods, Springer-Verlag, Berlin, 1988.

[10]

P. Malliavin and H. Airault, "Intégration et Analyse de Fourier, Probabilités et Analyse Gaussienne," 2nd edition, Collection Maîtrise de Mathématiques Pures, Masson, Paris, 1994.

[11]

D. Mihalas and B. Weibel Mihalas, "Foundations of Radiation Hydrodynamics," Oxford University Press, New York, 1984, Reprint, Dover 1999.

[12]

G. Nappo, E. Orlandi and H. Rost, A reaction-diffusion model for moderately interacting particles, J. Stat. Phys., 55 (1989), 579-600. doi: 10.1007/BF01041598.

[13]

V. Ricci and B. Wennberg, On the derivation of a linear Boltzmann equation from a periodic lattice gas, Stochastic Process. Appl., 111 (2004), 281-315. doi: 10.1016/j.spa.2004.01.002.

[14]

L. Schwartz, "Théorie des Distributions," Publications de l'institut de Mathématique de l'Université de Strasbourg, No. IX-X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.

[15]

H. Spohn, The Lorentz process converges to a random flight process, Commun. Math. Phys., 60 (1978), 277-290. doi: 10.1007/BF01612893.

[16]

C. I. Steefel, D. J. De Paolo and P. C. Lichtner, Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth and Planetary Science Letters, 240 (2005), 539-558.

[17]

A. S. Sznitman, Propagation of chaos for a system of annihilating Brownian spheres, CPAM, 40 (1987), 663-690.

show all references

References:
[1]

C. Boldrighini, L. A. Bunimovich and Ya. G. Sinaĭ, On the Boltzmann equation for the Lorentz gas, J. Stat. Phys., 32 (1983), 477-501. doi: 10.1007/BF01008951.

[2]

J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas, Commun. Math. Phys., 190 (1998), 491-508. doi: 10.1007/s002200050249.

[3]

L. Desvillettes and V. Ricci, Non-Markovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field, Bull. Sci. Math., 128 (2004), 39-46. doi: 10.1016/j.bulsci.2003.09.003.

[4]

L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic of the Fokker-Planck type in the limit of grazing collisions, J. Stat. Phys., 104 (2001), 1173-1189. doi: 10.1023/A:1010461929872.

[5]

G. Gallavotti, "Rigorous Theory of the Boltzmann Equation in the Lorentz Gas," Nota interna n. 358, Istituto di Fisica, Università di Roma, 1972.

[6]

F. Golse, The mean-field limit for the dynamics of large particle systems, in Journées "Equations aux Dérivées Partielles," Exp. No. IX, 47 pp., Univ. Nantes, Nantes, 2003.

[7]

F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse, Ser.6, 17 (2008), 735-749.

[8]

F. Golse, Recent results on the periodic Lorentz gas, preprint, HAL: hal-00390895, (2009), 1-62.

[9]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," Vol. 2, Functional and Variational Methods, Springer-Verlag, Berlin, 1988.

[10]

P. Malliavin and H. Airault, "Intégration et Analyse de Fourier, Probabilités et Analyse Gaussienne," 2nd edition, Collection Maîtrise de Mathématiques Pures, Masson, Paris, 1994.

[11]

D. Mihalas and B. Weibel Mihalas, "Foundations of Radiation Hydrodynamics," Oxford University Press, New York, 1984, Reprint, Dover 1999.

[12]

G. Nappo, E. Orlandi and H. Rost, A reaction-diffusion model for moderately interacting particles, J. Stat. Phys., 55 (1989), 579-600. doi: 10.1007/BF01041598.

[13]

V. Ricci and B. Wennberg, On the derivation of a linear Boltzmann equation from a periodic lattice gas, Stochastic Process. Appl., 111 (2004), 281-315. doi: 10.1016/j.spa.2004.01.002.

[14]

L. Schwartz, "Théorie des Distributions," Publications de l'institut de Mathématique de l'Université de Strasbourg, No. IX-X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.

[15]

H. Spohn, The Lorentz process converges to a random flight process, Commun. Math. Phys., 60 (1978), 277-290. doi: 10.1007/BF01612893.

[16]

C. I. Steefel, D. J. De Paolo and P. C. Lichtner, Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth and Planetary Science Letters, 240 (2005), 539-558.

[17]

A. S. Sznitman, Propagation of chaos for a system of annihilating Brownian spheres, CPAM, 40 (1987), 663-690.

[1]

Shige Peng. Law of large numbers and central limit theorem under nonlinear expectations. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 4-. doi: 10.1186/s41546-019-0038-2

[2]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[3]

Freddy Dumortier. Sharp upperbounds for the number of large amplitude limit cycles in polynomial Lienard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1465-1479. doi: 10.3934/dcds.2012.32.1465

[4]

Zengjing Chen, Weihuan Huang, Panyu Wu. Extension of the strong law of large numbers for capacities. Mathematical Control and Related Fields, 2019, 9 (1) : 175-190. doi: 10.3934/mcrf.2019010

[5]

Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027

[6]

María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255

[7]

Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5481-5502. doi: 10.3934/dcdsb.2019067

[8]

S.-I. Ei, M. Mimura, M. Nagayama. Interacting spots in reaction diffusion systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 31-62. doi: 10.3934/dcds.2006.14.31

[9]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[10]

Mingshang Hu, Xiaojuan Li, Xinpeng Li. Convergence rate of Peng’s law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 261-266. doi: 10.3934/puqr.2021013

[11]

Yongsheng Song. Stein’s method for the law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 199-212. doi: 10.3934/puqr.2021010

[12]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[13]

David Cowan. Rigid particle systems and their billiard models. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111

[14]

Matthias Büger. Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 691-708. doi: 10.3934/dcds.1998.4.691

[15]

Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751

[16]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control and Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[17]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[18]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[19]

Péter Koltai, Alexander Volf. Optimizing the stable behavior of parameter-dependent dynamical systems --- maximal domains of attraction, minimal absorption times. Journal of Computational Dynamics, 2014, 1 (2) : 339-356. doi: 10.3934/jcd.2014.1.339

[20]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]