Citation: |
[1] |
A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: an essay on recent research, Monatsh. Math., 142 (2004), 35-43.doi: 10.1007/s00605-004-0239-2. |
[2] |
G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh., 16 (1952), 67-78. |
[3] |
Jean-Philippe Bartier, Adrien Blanchet, Jean Dolbeault and Miguel Escobedo, Improved intermediate asymptotics for the heat equation, Appl. Math. Lett., 24 (2011), 76-81.doi: 10.1016/j.aml.2010.08.020. |
[4] |
Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo and Juan-Luis Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436. |
[5] |
Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo and Juan Luis Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191 (2009), 347-385.doi: 10.1007/s00205-008-0155-z. |
[6] |
M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459-16464.doi: 10.1073/pnas.1003972107. |
[7] |
Matteo Bonforte, Gabriele Grillo and Juan Luis Vázquez, Special fast diffusion with slow asymptotics: entropy method and flow on a Riemann manifold, Arch. Ration. Mech. Anal., 196 (2010), 631-680.doi: 10.1007/s00205-009-0252-7. |
[8] |
Matteo Bonforte and Juan Luis Vazquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240 (2006), 399-428. |
[9] |
M. J. Cáceres and Giuseppe Toscani, Kinetic approach to long time behavior of linearized fast diffusion equations, J. Stat. Phys., 128 (2007), 883-925.doi: 10.1007/s10955-007-9329-6. |
[10] |
J. A. Carrillo, M. Di Francesco and G. Toscani, Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc., 135 (2007), 353-363.doi: 10.1090/S0002-9939-06-08594-7. |
[11] |
J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.doi: 10.1007/s006050170032. |
[12] |
J. A. Carrillo, C. Lederman, P. A. Markowich and G. Toscani, Poincaré inequalities for linearizations of very fast diffusion equations, Nonlinearity, 15 (2002), 565-580.doi: 10.1088/0951-7715/15/3/303. |
[13] |
J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49 (2000), 113-142. |
[14] |
D. Cordero-Erausquin, B. Nazaret and C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182 (2004), 307-332.doi: 10.1016/S0001-8708(03)00080-X. |
[15] |
Panagiota Daskalopoulos and Natasa Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.doi: 10.1515/CRELLE.2008.066. |
[16] |
Manuel Del Pino and Jean Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81 (2002), 847-875. |
[17] |
Jochen Denzler and Robert J. McCann, Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA, 100 (2003), 6922-6925.doi: 10.1073/pnas.1231896100. |
[18] |
_____, Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology, Arch. Ration. Mech. Anal., 175 (2005), 301-342.doi: 10.1007/s00205-004-0336-3. |
[19] |
Avner Friedman and Shoshana Kamin, The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563. |
[20] |
Claudia Lederman and Peter A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), 301-332. |
[21] |
Robert J. McCann and Dejan Slepčev, Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not., (2006), 22 pp. |
[22] |
William I. Newman, A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I, J. Math. Phys., 25 (1984), 3120-3123.doi: 10.1063/1.526028. |
[23] |
Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. |
[24] |
James Ralston, A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II, J. Math. Phys., 25 (1984), 3124-3127.doi: 10.1063/1.526029. |
[25] |
Giuseppe Toscani, A central limit theorem for solutions of the porous medium equation, J. Evol. Equ., 5 (2005), 185-203.doi: 10.1007/s00028-005-0183-1. |
[26] |
Juan-Luis Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ., 3 (2003), 67-118.doi: 10.1007/s000280300004. |