September  2011, 4(3): 735-766. doi: 10.3934/krm.2011.4.735

Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime

1. 

Project-Team SIMPAF–INRIA Lille Nord Europe, Park Plazza, 40 avenue Halley, F-59650 Villeneuve d’Ascq cedex, France, France

Received  March 2011 Revised  June 2011 Published  August 2011

The Spitzer-Härm regime arising in plasma physics leads asymptotically to a nonlinear diffusion equation for the electron temperature. In this work we propose a hierarchy of models intended to retain more features of the underlying modeling based on kinetic equations. These models are of non--local type. Nevertheless, owing to energy discretization they can lead to coupled systems of diffusion equations. We make the connection between the different models precise and bring out some mathematical properties of the models. A numerical scheme is designed for the approximate models, and simulations validate the proposed approach.
Citation: Thierry Goudon, Martin Parisot. Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime. Kinetic and Related Models, 2011, 4 (3) : 735-766. doi: 10.3934/krm.2011.4.735
References:
[1]

F. Alouani Bibi and J.-P. Matte, Nonlocal electron heat transport and electronion energy transfer in the presence of strong collisional heating, Laser and Particle Beams, 22 (2004), 103-108.

[2]

E. M. Epperlein and R. Short, A practical nonlocal model for electron heat transport in laser plasmas, Phys. Fluids B, 3 (1991), 3092-3098. doi: 10.1063/1.859789.

[3]

M. Frank, D. Levermore and M. Shäfer, Diffusive corrections to $\mathbb P_N$ approximations, Multiscale Model. Simul., 9 (2011), 1-28.

[4]

T. Goudon and M. Parisot, On the Spitzer-Härm regime and non-local approximations: modeling, analysis and numerical simulations, SIAM Multiscale Model. Simul., (2011), To appear.

[5]

B. Graille, "Modélisation de Mélanges Gazeux Réactifs Ionisés Dissipatifs," Ph.D. thesis, Ecole Polytechnique, 2004.

[6]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[7]

D. Levermore, "Boundary Conditions for Moment Closures," IPAM KT 2009, UCLA, CA, 2009.

[8]

D. Levermore, "Kinetic Theory, Gaussian Moment Closures, and Fluid Approximations," IPAM KT 2009, Culminating Retreat, Lake Arrowhead, CA, 2009.

[9]

T.-P.Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997), viii+120.

[10]

J.-F. Luciani and P. Mora, Resummation methods of the Chapman-Enskog expansion for a strongly inhomogeneous plasma, J. Stat. Phys., 43 (1986), 281-302. doi: 10.1007/BF01010582.

[11]

J.-F. Luciani and P. Mora, Nonlocal electron transport in laser created plasmas, Laser and Particle Beams, 12 (1994), 387-400. doi: 10.1017/S0263034600008247.

[12]

J.-F. Luciani, P. Mora and R. Pellat, Quasistatic heat front and delocalized heat flux, Phys. Fluids, 28 (1985), 835-845. doi: 10.1063/1.865052.

[13]

P. Nicolaï, J.-L. Feugeas and G. Schurtz, A practical nonlocal model for heat transport in magnetized laser plasmas, Phys. of Plasmas, 13 (2006), 032701-1/032701-13.

[14]

M. Parisot, Finite volume schemes on unstructured grids for generalized Spitzer-Härm model, Tech. Rep., INRIA, 2011, In preparation.

[15]

E. J. Routh, "A Treatise on the Stability of a Given State of Motion," Macmillan and Co., 1877.

[16]

G. P. Schurtz, P. Nicolaï and M. Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Physics of Plasmas, 7 (2000), 4238-4250. doi: 10.1063/1.1289512.

[17]

I. P. Shkarofsky, Cartesian tensor expansion of the Fokker-Planck equation, Can. J. Phys., 41 (1963), 1753-1775. doi: 10.1139/p63-179.

[18]

L. Spitzer and R. Härm, Transport phenomena in a completely ionized gas, Phys. Rev., 89 (1953), 977-981. doi: 10.1103/PhysRev.89.977.

show all references

References:
[1]

F. Alouani Bibi and J.-P. Matte, Nonlocal electron heat transport and electronion energy transfer in the presence of strong collisional heating, Laser and Particle Beams, 22 (2004), 103-108.

[2]

E. M. Epperlein and R. Short, A practical nonlocal model for electron heat transport in laser plasmas, Phys. Fluids B, 3 (1991), 3092-3098. doi: 10.1063/1.859789.

[3]

M. Frank, D. Levermore and M. Shäfer, Diffusive corrections to $\mathbb P_N$ approximations, Multiscale Model. Simul., 9 (2011), 1-28.

[4]

T. Goudon and M. Parisot, On the Spitzer-Härm regime and non-local approximations: modeling, analysis and numerical simulations, SIAM Multiscale Model. Simul., (2011), To appear.

[5]

B. Graille, "Modélisation de Mélanges Gazeux Réactifs Ionisés Dissipatifs," Ph.D. thesis, Ecole Polytechnique, 2004.

[6]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434. doi: 10.1007/s00220-002-0729-9.

[7]

D. Levermore, "Boundary Conditions for Moment Closures," IPAM KT 2009, UCLA, CA, 2009.

[8]

D. Levermore, "Kinetic Theory, Gaussian Moment Closures, and Fluid Approximations," IPAM KT 2009, Culminating Retreat, Lake Arrowhead, CA, 2009.

[9]

T.-P.Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997), viii+120.

[10]

J.-F. Luciani and P. Mora, Resummation methods of the Chapman-Enskog expansion for a strongly inhomogeneous plasma, J. Stat. Phys., 43 (1986), 281-302. doi: 10.1007/BF01010582.

[11]

J.-F. Luciani and P. Mora, Nonlocal electron transport in laser created plasmas, Laser and Particle Beams, 12 (1994), 387-400. doi: 10.1017/S0263034600008247.

[12]

J.-F. Luciani, P. Mora and R. Pellat, Quasistatic heat front and delocalized heat flux, Phys. Fluids, 28 (1985), 835-845. doi: 10.1063/1.865052.

[13]

P. Nicolaï, J.-L. Feugeas and G. Schurtz, A practical nonlocal model for heat transport in magnetized laser plasmas, Phys. of Plasmas, 13 (2006), 032701-1/032701-13.

[14]

M. Parisot, Finite volume schemes on unstructured grids for generalized Spitzer-Härm model, Tech. Rep., INRIA, 2011, In preparation.

[15]

E. J. Routh, "A Treatise on the Stability of a Given State of Motion," Macmillan and Co., 1877.

[16]

G. P. Schurtz, P. Nicolaï and M. Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Physics of Plasmas, 7 (2000), 4238-4250. doi: 10.1063/1.1289512.

[17]

I. P. Shkarofsky, Cartesian tensor expansion of the Fokker-Planck equation, Can. J. Phys., 41 (1963), 1753-1775. doi: 10.1139/p63-179.

[18]

L. Spitzer and R. Härm, Transport phenomena in a completely ionized gas, Phys. Rev., 89 (1953), 977-981. doi: 10.1103/PhysRev.89.977.

[1]

Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic and Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002

[2]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[3]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic and Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[4]

Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic and Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503

[5]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic and Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[6]

Claudia Negulescu, Anne Nouri, Philippe Ghendrih, Yanick Sarazin. Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics. Kinetic and Related Models, 2008, 1 (4) : 619-639. doi: 10.3934/krm.2008.1.619

[7]

Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202

[8]

Shixin Xu, Xingye Yue, Changrong Zhang. Homogenization: In mathematics or physics?. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1575-1590. doi: 10.3934/dcdss.2016064

[9]

Silvia Caprino, Carlo Marchioro. On the plasma-charge model. Kinetic and Related Models, 2010, 3 (2) : 241-254. doi: 10.3934/krm.2010.3.241

[10]

Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic and Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143

[11]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[12]

Jules Guillot, Emmanuel Frénod, Pierre Ailliot. Physics informed model error for data assimilation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022059

[13]

Uri M. Ascher. Discrete processes and their continuous limits. Journal of Dynamics and Games, 2020, 7 (2) : 123-140. doi: 10.3934/jdg.2020008

[14]

Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17

[15]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[16]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

[17]

Silvia Caprino, Carlo Marchioro. On a charge interacting with a plasma of unbounded mass. Kinetic and Related Models, 2011, 4 (1) : 215-226. doi: 10.3934/krm.2011.4.215

[18]

Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011

[19]

Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic and Related Models, 2010, 3 (4) : 529-644. doi: 10.3934/krm.2010.3.529

[20]

Menglu Feng, Mei Choi Chiu, Hoi Ying Wong. Pairs trading with illiquidity and position limits. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2991-3009. doi: 10.3934/jimo.2019090

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]