Citation: |
[1] |
M. Anile, V. Romano and G. Russo, Extended hydrodynamical model of carrier transport in semiconductors, SIAM J. Appl. Math., 61 (2000), 74-101.doi: 10.1137/S003613999833294X. |
[2] |
G. Baccarani and M. Wordeman, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid-State Electronics, 28 (1985), 407-416.doi: 10.1016/0038-1101(85)90100-5. |
[3] |
P. Bhatnagar, E. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.doi: 10.1103/PhysRev.94.511. |
[4] |
S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90 (2010), 219-230.doi: 10.1002/zamm.200900297. |
[5] |
A. Caldeira and A. Leggett, Path integral approach to quantum Brownian motion, Physica A, 121 (1983), 587-616.doi: 10.1016/0378-4371(83)90013-4. |
[6] |
P. Degond, S. Gallego and F. Méhats, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908. |
[7] |
P. Degond, S. Gallego and F. Méhats, Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation, Multiscale Model. Simul., 6 (2007), 246-272.doi: 10.1137/06067153X. |
[8] |
P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum hydrodynamic and diffusion models derived from the entropy principle, in "Quantum Transport" (eds. G. Allaire et al.), 111-168, Lecture Notes Math., 1946, Springer, Berlin, 2008. |
[9] |
P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum diffusion models derived from the entropy principle, in "Progress in Industrial Mathematics at ECMI 2006" (eds. L. Bonilla et al.), 106-122, Mathematics in Industry, 12, Springer, Berlin, 2008. |
[10] |
P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667.doi: 10.1007/s10955-004-8823-3. |
[11] |
P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys., 112 (2003), 587-628.doi: 10.1023/A:1023824008525. |
[12] |
J. Dong, A note on barotropic compressible quantum Navier-Stokes equations, Nonlin. Anal., 73 (2010), 854-856.doi: 10.1016/j.na.2010.03.047. |
[13] |
W. Dreyer, Maximisation of the entropy in non-equilibrium, J. Phys. A, 20 (1987), 6505-6517.doi: 10.1088/0305-4470/20/18/047. |
[14] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004. |
[15] |
C. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409-427.doi: 10.1137/S0036139992240425. |
[16] |
F. Jiang, A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations, Nonlin. Anal. Real World Appl., 12 (2011), 1733-1735.doi: 10.1016/j.nonrwa.2010.11.005. |
[17] |
A. Jüngel, "Transport Equations for Semiconductors," Lecture Notes in Physics, 773, Springer-Verlag, Berlin, 2009. |
[18] |
A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045. |
[19] |
A. Jüngel, Effective velocity in compressible Navier-Stokes equations with third-order derivatives, Nonlin. Anal., 74 (2011), 2813-2818.doi: 10.1016/j.na.2011.01.002. |
[20] |
A. Jüngel, Dissipative quantum fluid models, to appear in Revista Mat. Univ. Parma, 2011. |
[21] |
A. Jüngel and D. Matthes, Derivation of the isothermal quantum hydrodynamic equations using entropy minimization, Z. Angew. Math. Mech., 85 (2005), 806-814.doi: 10.1002/zamm.200510232. |
[22] |
A. Jüngel, D. Matthes and J.-P. Milišić, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67 (2006), 46-68.doi: 10.1137/050644823. |
[23] |
C. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.doi: 10.1007/BF02179552. |
[24] |
T. Li, Z. Yu, Y. Wang, L. Huang and C. Xiang, "Numerical Simulation of Negative Differential Resistance Characteristics in Si/Si$_1-x$Ge$_x$ RTD at Room Temperature," Proceedings of the 2005 IEEE Conference on Electron Devices and Solid-State Circuits, (2005), 409-412. |
[25] |
F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys., 140 (2010), 565–-602.doi: 10.1007/s10955-010-0003-z. |