Citation: |
[1] |
J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006. |
[2] |
N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.doi: 10.1063/1.531567. |
[3] |
J. A. Carrillo, I. M. Gamba, A. Majorana and C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods, J. Comput. Phys., 214 (2006), 55-80.doi: 10.1016/j.jcp.2005.09.005. |
[4] |
Y. Cheng, I. M. Gamba, A. Majorana and C.-W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3130-3150.doi: 10.1016/j.cma.2009.05.015. |
[5] |
M. V. Fischetti, S. E. Laux, P. M. Solomon and A. Kumar, Thirty years of Monte Carlo simulations of electronic transport in semiconductors: Their relevance to science and mainstream VLSI technology, Journal of Computational Electronics, 3 (2004), 287-293.doi: 10.1007/s10825-004-7063-8. |
[6] |
T. Grasser, H. Kosina, M. Gritsch and S. Selberherr, Using six moments of Boltzmann's transport equation for device simulation, J. Appl. Phys., 90 (2001), 2389-2396.doi: 10.1063/1.1389757. |
[7] |
T. Grasser, H. Kosina, C. Heitzinger and S. Selberherr, Characterization of the hot electron distribution function using six moments, J. Appl. Phys., 91 (2002), 3869-3879.doi: 10.1063/1.1450257. |
[8] |
C. Jacoboni and P. Lugli, "The Monte Carlo Method for Semiconductor Device Simulation," Springer, New York, 1989. |
[9] |
C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Modern Phys., 55 (1983), 645-705.doi: 10.1103/RevModPhys.55.645. |
[10] |
C. Jungemann and B. Meinerzhagen, "Hierarchical Device Simulation. The Monte-Carlo Perspective," Springer, Wien, 2003. |
[11] |
A. Majorana, Equilibrium solutions of the non-linear Boltzmann equation for an electron gas in a semiconductor, Nuovo Cimento B, 108 (1993), 871-877.doi: 10.1007/BF02828734. |
[12] |
A. Majorana, Trend to equilibrium of electron gas in a semiconductor according to the Boltzmann equation, Proceedings of the Fifteenth International Conference on Transport Theory, Part II (Göteborg, 1997), Transport Theory Statist. Phys., 27 (1998), 547-571.doi: 10.1080/00411459808205642. |
[13] |
A. Majorana and C. Milazzo, Space homogeneous solutions of the linear semiconductor Boltzmann equation, J. Math. Anal. Appl., 259 (2001), 609-629.doi: 10.1006/jmaa.2001.7444. |
[14] |
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990. |
[15] |
O. Muscato, W. Wagner and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors, M2AN Math. Model. Numer. Anal., 44 (2010), 1049-1068.doi: 10.1051/m2an/2010051. |
[16] |
S. Rjasanow and W. Wagner, "Stochastic Numerics for the Boltzmann Equation," Springer Series in Computational Mechanics, 37, Springer-Verlag, Berlin, 2005. |
[17] |
V. Sverdlov, E. Ungersboeck, H. Kosina and S. Selberherr, Current transport models for nanoscale semiconductor devices, Materials Science and Engineering: R, 58 (2008), 228-270. |