Advanced Search
Article Contents
Article Contents

Properties of the steady state distribution of electrons in semiconductors

Abstract Related Papers Cited by
  • This paper studies a Boltzmann transport equation with several electron-phonon scattering mechanisms, which describes the charge transport in semiconductors. The electric field is coupled to the electron distribution function via Poisson's equation. Both the parabolic and the quasi-parabolic band approximations are considered. The steady state behaviour of the electron distribution function is investigated by a Monte Carlo algorithm. More precisely, several nonlinear functionals of the solution are calculated that quantify the deviation of the steady state from a Maxwellian distribution with respect to the wave-vector. On the one hand, the numerical results illustrate known theoretical statements about the steady state and indicate directions for further studies. On the other hand, the nonlinear functionals provide tools that can be used in the framework of Monte Carlo algorithms for detecting regions in which the steady state distribution has a relatively simple structure, thus providing a basis for domain decomposition methods.
    Mathematics Subject Classification: 82D37, 65C05.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006.


    N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.doi: 10.1063/1.531567.


    J. A. Carrillo, I. M. Gamba, A. Majorana and C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods, J. Comput. Phys., 214 (2006), 55-80.doi: 10.1016/j.jcp.2005.09.005.


    Y. Cheng, I. M. Gamba, A. Majorana and C.-W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3130-3150.doi: 10.1016/j.cma.2009.05.015.


    M. V. Fischetti, S. E. Laux, P. M. Solomon and A. Kumar, Thirty years of Monte Carlo simulations of electronic transport in semiconductors: Their relevance to science and mainstream VLSI technology, Journal of Computational Electronics, 3 (2004), 287-293.doi: 10.1007/s10825-004-7063-8.


    T. Grasser, H. Kosina, M. Gritsch and S. Selberherr, Using six moments of Boltzmann's transport equation for device simulation, J. Appl. Phys., 90 (2001), 2389-2396.doi: 10.1063/1.1389757.


    T. Grasser, H. Kosina, C. Heitzinger and S. Selberherr, Characterization of the hot electron distribution function using six moments, J. Appl. Phys., 91 (2002), 3869-3879.doi: 10.1063/1.1450257.


    C. Jacoboni and P. Lugli, "The Monte Carlo Method for Semiconductor Device Simulation," Springer, New York, 1989.


    C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Modern Phys., 55 (1983), 645-705.doi: 10.1103/RevModPhys.55.645.


    C. Jungemann and B. Meinerzhagen, "Hierarchical Device Simulation. The Monte-Carlo Perspective," Springer, Wien, 2003.


    A. Majorana, Equilibrium solutions of the non-linear Boltzmann equation for an electron gas in a semiconductor, Nuovo Cimento B, 108 (1993), 871-877.doi: 10.1007/BF02828734.


    A. Majorana, Trend to equilibrium of electron gas in a semiconductor according to the Boltzmann equation, Proceedings of the Fifteenth International Conference on Transport Theory, Part II (Göteborg, 1997), Transport Theory Statist. Phys., 27 (1998), 547-571.doi: 10.1080/00411459808205642.


    A. Majorana and C. Milazzo, Space homogeneous solutions of the linear semiconductor Boltzmann equation, J. Math. Anal. Appl., 259 (2001), 609-629.doi: 10.1006/jmaa.2001.7444.


    P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990.


    O. Muscato, W. Wagner and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors, M2AN Math. Model. Numer. Anal., 44 (2010), 1049-1068.doi: 10.1051/m2an/2010051.


    S. Rjasanow and W. Wagner, "Stochastic Numerics for the Boltzmann Equation," Springer Series in Computational Mechanics, 37, Springer-Verlag, Berlin, 2005.


    V. Sverdlov, E. Ungersboeck, H. Kosina and S. Selberherr, Current transport models for nanoscale semiconductor devices, Materials Science and Engineering: R, 58 (2008), 228-270.

  • 加载中

Article Metrics

HTML views() PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint