December  2011, 4(4): 831-856. doi: 10.3934/krm.2011.4.831

Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential

1. 

IMT, UMR CNRS 5219, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

2. 

Department of Mathematics, National University of Singapore, Singapore 119076, Singapore

3. 

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, France

Received  May 2011 Revised  September 2011 Published  November 2011

We consider the three dimensional Gross-Pitaevskii equation\break (GPE) describing a Bose-Einstein Condensate (BEC) which is highly confined in vertical $z$ direction. The confining potential induces high oscillations in time. If the confinement in the $z$ direction is a harmonic trap -- an approximation which is widely used in physical experiments -- the very special structure of the spectrum of the confinement operator implies that the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out with an error of order of $\epsilon$, which is the typical period of the oscillations. In this article, we construct a more accurate averaged model, which approximates the GPE up to errors of order $\mathcal{O}(\epsilon^2)$. Then, expansions of this model over the eigenfunctions (modes) of the confining operator $H_z$ in the $z$-direction are given in view of numerical applications. Efficient numerical methods are constructed to solve the GPE with cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are presented for various kinds of initial data.
Citation: Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic and Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831
References:
[1]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 13 (1993), 115-124. doi: 10.1093/imanum/13.1.115.

[2]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comp. Phys., 187 (2003), 318-342. doi: 10.1016/S0021-9991(03)00102-5.

[3]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments, Math. Models Meth. Appl. Sci., 15 (2005), 767-782. doi: 10.1142/S0218202505000534.

[4]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26 (2005), 2010-2028. doi: 10.1137/030601211.

[5]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates, J. Comput. Phys., 227 (2008), 9778-9793. doi: 10.1016/j.jcp.2008.07.017.

[6]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity, J. Differential Equations, 245 (2008), 154-200.

[7]

N. Ben Abdallah, F. Méhats and O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement,, SIAM J. Math. Anal., 36 (): 986.  doi: 10.1137/S0036141003437915.

[8]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential, SIAM J. Math. Anal., 37 (2005), 189-199. doi: 10.1137/040614554.

[9]

B. Bidéaray-Fesquet, F. Castella and P. Degond, From Bloch model to the rate equations, Discrete Contin. Dyn. Syst., 11 (2004), 1-26. doi: 10.3934/dcds.2004.11.1.

[10]

B. Bidéaray-Fesquet, F. Castella, E. Dumas and M. Gisclon, From Bloch model to the rate equations. II. The case of almost degenerate energy levels, Math. Models Methods Appl. Sci., 14 (2004), 1785-1817. doi: 10.1142/S0218202504003829.

[11]

J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118.

[12]

F. Bornemann, "Homogenization in Time of Singularly Perturbed Mechanical Systems," Lecture Notes in Mathematics, 1687, Springer-Verlag, Berlin, 1998.

[13]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), 895-898. doi: 10.1103/PhysRevLett.83.895.

[14]

F. Castella, P. Degond and T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force, J. Stat. Phys., 124 (2006), 913-950. doi: 10.1007/s10955-006-9071-5.

[15]

F. Castella, P. Degond and T. Goudon, Large time dynamics of a classical system subject to a fast varying force, Comm. Math. Phys., 276 (2007), 23-49. doi: 10.1007/s00220-007-0339-7.

[16]

T. Cazenave, "Semilinear Schrödinger Equations," Courant Lect. Notes Math., 10, New York University, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence, R.I., 2003.

[17]

F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field, Comm. Math. Phys., 292 (2009), 829-870.

[18]

G. F. Dell'Antonio and L. Tenuta, Semiclassical analysis of constrained quantum systems, J. Phys. A, 37 (2004), 5605-5624. doi: 10.1088/0305-4470/37/21/007.

[19]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap, Phys. Rev. E, 67 (2003), 046706. doi: 10.1103/PhysRevE.67.046706.

[20]

D. Funaro, "Polynomial Approximations of Differential Equations," Lecture Notes in Physics, New Series m: Monographs, 8, Springer-Verlag, Berlin, 1992.

[21]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76 (1997), 477-498. doi: 10.1016/S0021-7824(97)89959-X.

[22]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Rev. Chronicle, 15 (1973), 423.

[23]

B. Helffer, "Théorie Spectrale pour des Opérateurs Globalement Elliptiques," Astérisque, 112, Société Mathématique de France, Paris, 1984.

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians," Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin, 2005.

[25]

D. Lannes, Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum, Adv. Differential Equations, 6 (2001), 731-768.

[26]

G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations, 187 (2003), 106-183. doi: 10.1016/S0022-0396(02)00037-2.

[27]

L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation," International Series of Monographs on Physics, 116, The Clarendon Press, Oxford University Press, Oxford, 2003.

[28]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable, J. Comput. Phys., 104 (1993), 277-284. doi: 10.1006/jcph.1993.1029.

[29]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems," Appl. Math. Sci., 59, Springer-Verlag, New York, 1985.

[30]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems," 2nd edition, Appl. Math. Sci., 59, Springer, New York, 2007.

[31]

S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), 476-512. doi: 10.1006/jdeq.1994.1157.

[32]

G. Szegö, "Orthogonal Polynomials," 4th edition, Amer. Math. Soc., Colloq. Publ., Vol. XXIII, AMS, Providence, R.I., 1975.

[33]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys., 55 (1984), 203-230. doi: 10.1016/0021-9991(84)90003-2.

[34]

J. Wachsmuth and S. Teufel, Constrained quantum systems as an adiabatic problem, Phys. Rev. A, 82 (2010), 022112. doi: 10.1103/PhysRevA.82.022112.

show all references

References:
[1]

G. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 13 (1993), 115-124. doi: 10.1093/imanum/13.1.115.

[2]

W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comp. Phys., 187 (2003), 318-342. doi: 10.1016/S0021-9991(03)00102-5.

[3]

W. Bao, P. A. Markowich, C. Schmeiser and R. M. Weishäupl, On the Gross-Pitaevskii equation with strongly anisotropic confinement: Formal asymptotics and numerical experiments, Math. Models Meth. Appl. Sci., 15 (2005), 767-782. doi: 10.1142/S0218202505000534.

[4]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26 (2005), 2010-2028. doi: 10.1137/030601211.

[5]

W. Bao and J. Shen, A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates, J. Comput. Phys., 227 (2008), 9778-9793. doi: 10.1016/j.jcp.2008.07.017.

[6]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity, J. Differential Equations, 245 (2008), 154-200.

[7]

N. Ben Abdallah, F. Méhats and O. Pinaud, Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement,, SIAM J. Math. Anal., 36 (): 986.  doi: 10.1137/S0036141003437915.

[8]

N. Ben Abdallah, F. Méhats, C. Schmeiser and R. M. Weishäupl, The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential, SIAM J. Math. Anal., 37 (2005), 189-199. doi: 10.1137/040614554.

[9]

B. Bidéaray-Fesquet, F. Castella and P. Degond, From Bloch model to the rate equations, Discrete Contin. Dyn. Syst., 11 (2004), 1-26. doi: 10.3934/dcds.2004.11.1.

[10]

B. Bidéaray-Fesquet, F. Castella, E. Dumas and M. Gisclon, From Bloch model to the rate equations. II. The case of almost degenerate energy levels, Math. Models Methods Appl. Sci., 14 (2004), 1785-1817. doi: 10.1142/S0218202504003829.

[11]

J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118.

[12]

F. Bornemann, "Homogenization in Time of Singularly Perturbed Mechanical Systems," Lecture Notes in Mathematics, 1687, Springer-Verlag, Berlin, 1998.

[13]

B. M. Caradoc-Davis, R. J. Ballagh and K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), 895-898. doi: 10.1103/PhysRevLett.83.895.

[14]

F. Castella, P. Degond and T. Goudon, Diffusion dynamics of classical systems driven by an oscillatory force, J. Stat. Phys., 124 (2006), 913-950. doi: 10.1007/s10955-006-9071-5.

[15]

F. Castella, P. Degond and T. Goudon, Large time dynamics of a classical system subject to a fast varying force, Comm. Math. Phys., 276 (2007), 23-49. doi: 10.1007/s00220-007-0339-7.

[16]

T. Cazenave, "Semilinear Schrödinger Equations," Courant Lect. Notes Math., 10, New York University, Courant Institute of Mathematical Sciences, New York, Amer. Math. Soc., Providence, R.I., 2003.

[17]

F. Delebecque-Fendt and F. Méhats, An effective mass theorem for the bidimensional electron gas in a strong magnetic field, Comm. Math. Phys., 292 (2009), 829-870.

[18]

G. F. Dell'Antonio and L. Tenuta, Semiclassical analysis of constrained quantum systems, J. Phys. A, 37 (2004), 5605-5624. doi: 10.1088/0305-4470/37/21/007.

[19]

C. M. Dion and E. Cances, Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap, Phys. Rev. E, 67 (2003), 046706. doi: 10.1103/PhysRevE.67.046706.

[20]

D. Funaro, "Polynomial Approximations of Differential Equations," Lecture Notes in Physics, New Series m: Monographs, 8, Springer-Verlag, Berlin, 1992.

[21]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76 (1997), 477-498. doi: 10.1016/S0021-7824(97)89959-X.

[22]

R. H. Hardin and F. D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Rev. Chronicle, 15 (1973), 423.

[23]

B. Helffer, "Théorie Spectrale pour des Opérateurs Globalement Elliptiques," Astérisque, 112, Société Mathématique de France, Paris, 1984.

[24]

B. Helffer and F. Nier, "Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians," Lecture Notes in Mathematics, 1862, Springer-Verlag, Berlin, 2005.

[25]

D. Lannes, Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum, Adv. Differential Equations, 6 (2001), 731-768.

[26]

G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations, 187 (2003), 106-183. doi: 10.1016/S0022-0396(02)00037-2.

[27]

L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation," International Series of Monographs on Physics, 116, The Clarendon Press, Oxford University Press, Oxford, 2003.

[28]

M. P. Robinson, G. Fairweather and B. M. Herbst, On the numerical solution of the cubic Schrödinger equation in one space variable, J. Comput. Phys., 104 (1993), 277-284. doi: 10.1006/jcph.1993.1029.

[29]

J. A. Sanders and F. Verhulst, "Averaging Methods in Nonlinear Dynamical Systems," Appl. Math. Sci., 59, Springer-Verlag, New York, 1985.

[30]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems," 2nd edition, Appl. Math. Sci., 59, Springer, New York, 2007.

[31]

S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), 476-512. doi: 10.1006/jdeq.1994.1157.

[32]

G. Szegö, "Orthogonal Polynomials," 4th edition, Amer. Math. Soc., Colloq. Publ., Vol. XXIII, AMS, Providence, R.I., 1975.

[33]

T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys., 55 (1984), 203-230. doi: 10.1016/0021-9991(84)90003-2.

[34]

J. Wachsmuth and S. Teufel, Constrained quantum systems as an adiabatic problem, Phys. Rev. A, 82 (2010), 022112. doi: 10.1103/PhysRevA.82.022112.

[1]

Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089

[2]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[3]

Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214

[4]

Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic and Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048

[5]

Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225

[6]

Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481

[7]

E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120

[8]

Philipp Bader, Sergio Blanes, Fernando Casas, Mechthild Thalhammer. Efficient time integration methods for Gross-Pitaevskii equations with rotation term. Journal of Computational Dynamics, 2019, 6 (2) : 147-169. doi: 10.3934/jcd.2019008

[9]

Thomas Chen, Nataša Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 715-739. doi: 10.3934/dcds.2010.27.715

[10]

Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905

[11]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[12]

Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306

[13]

Yujin Guo, Xiaoyu Zeng, Huan-Song Zhou. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3749-3786. doi: 10.3934/dcds.2017159

[14]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[15]

Shuai Li, Jingjing Yan, Xincai Zhu. Constraint minimizers of perturbed gross-pitaevskii energy functionals in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2019, 18 (1) : 65-81. doi: 10.3934/cpaa.2019005

[16]

Yue Zhang, Jian Zhang. Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022007

[17]

Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018

[18]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[19]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29 (5) : 2915-2944. doi: 10.3934/era.2021019

[20]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (6)

[Back to Top]