Citation: |
[1] |
J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.doi: 10.1007/s006050170032. |
[2] |
S. Chapman and T. Cowling, "The Mathematical Theory of Non- Uniform Gases. The Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases," Third edition, prepared in co-operation with D. Burnett, Cambridge University Press, London, 1970. |
[3] |
F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana Math. J., 33 (1984), 673-709doi: 10.1512/iumj.1984.33.33036. |
[4] |
M. Escobedo, S. Mischler and M. A. Valle, Entropy maximization problem for quantum relativistic particles, Bull. Soc. Math. France, 133 (2005), 87-120. |
[5] |
R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian, Publ. Res. Inst. Math. Sciences, 29 (1993), 301-347.doi: 10.2977/prims/1195167275. |
[6] |
G. Kaniadakis and P. Quarati, Kinetic equation for classical particles obeying an exclusion principle, Phys. Rev. E, 48 (1993), 4263-4270.doi: 10.1103/PhysRevE.48.4263. |
[7] |
G. Kaniadakis and P. Quarati, Classical model of bosons and fermions, Phys. Rev. E., 49 (1994), 5103-5110.doi: 10.1103/PhysRevE.49.5103. |
[8] |
X. Lu, A modified Boltzmann equation for Bose-Einstein particles: Isotropic solutions and long-time behavior, J. Statist. Phys., 98 (2000), 1335-1394.doi: 10.1023/A:1018628031233. |