-
Previous Article
Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system
- KRM Home
- This Issue
-
Next Article
On the minimization problem of sub-linear convex functionals
Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach
1. | Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex 9, France |
2. | Department of Mathematics, University of Maryland, College Park, MD 20742 |
3. | Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France |
References:
[1] |
C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. A. M. S., 284 (1984), 617-649.
doi: 10.1090/S0002-9947-1984-0743736-0. |
[2] |
N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.
doi: 10.1063/1.531567. |
[3] |
N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., ().
|
[4] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.
doi: 10.2977/prims/1195188427. |
[5] |
A. V. Bobylev, J. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys., 98 (2000), 743-773.
doi: 10.1023/A:1018627625800. |
[6] |
A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails, J. Stat. Phys., 124 (2006), 497-516.
doi: 10.1007/s10955-006-9044-8. |
[7] |
P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversibles processes, Indiana Univ. Math. J., 49 (2000), 1175-1198. |
[8] |
M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, J. Statist. Phys., 109 (2002), 407-432.
doi: 10.1023/A:1020437925931. |
[9] |
T. Goudon and A. Mellet, On fluid limit for the semiconductors Boltzmann equation, Journal Diff. Equations, 189 (2003), 17-45.
doi: 10.1016/S0022-0396(02)00096-7. |
[10] |
E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys., 15 (1974), 75-81.
doi: 10.1063/1.1666510. |
[11] |
N. Masmoudi and M.-L. Tayeb, On the diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process, Comm. Partial Differential Equations, 35 (2010), 1163-1175. |
[12] |
A. Mellet, Diffusion limit of a nonlinear kinetic model without the detailed balance principle, Monatshefte f. Mathematik, 134 (2002), 305-329.
doi: 10.1007/s605-002-8265-1. |
[13] |
A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.
doi: 10.1512/iumj.2010.59.4128. |
[14] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2. |
[15] |
D. A. Mendis and M. Rosenberg, Cosmic dusty plasma, Annu. Rev. Astron. Astrophys., 32 (1994), 419-463.
doi: 10.1146/annurev.aa.32.090194.002223. |
[16] |
A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model, J. Statist. Phys., 114 (2004), 1453-1480.
doi: 10.1023/B:JOSS.0000013964.98706.00. |
[17] |
D. Summers and R. M. Thorne, The modified plasma dispersion function, Phys. Fluids, 83 (1991), 1835-1847. |
show all references
References:
[1] |
C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. A. M. S., 284 (1984), 617-649.
doi: 10.1090/S0002-9947-1984-0743736-0. |
[2] |
N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.
doi: 10.1063/1.531567. |
[3] |
N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., ().
|
[4] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.
doi: 10.2977/prims/1195188427. |
[5] |
A. V. Bobylev, J. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys., 98 (2000), 743-773.
doi: 10.1023/A:1018627625800. |
[6] |
A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails, J. Stat. Phys., 124 (2006), 497-516.
doi: 10.1007/s10955-006-9044-8. |
[7] |
P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversibles processes, Indiana Univ. Math. J., 49 (2000), 1175-1198. |
[8] |
M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, J. Statist. Phys., 109 (2002), 407-432.
doi: 10.1023/A:1020437925931. |
[9] |
T. Goudon and A. Mellet, On fluid limit for the semiconductors Boltzmann equation, Journal Diff. Equations, 189 (2003), 17-45.
doi: 10.1016/S0022-0396(02)00096-7. |
[10] |
E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys., 15 (1974), 75-81.
doi: 10.1063/1.1666510. |
[11] |
N. Masmoudi and M.-L. Tayeb, On the diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process, Comm. Partial Differential Equations, 35 (2010), 1163-1175. |
[12] |
A. Mellet, Diffusion limit of a nonlinear kinetic model without the detailed balance principle, Monatshefte f. Mathematik, 134 (2002), 305-329.
doi: 10.1007/s605-002-8265-1. |
[13] |
A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.
doi: 10.1512/iumj.2010.59.4128. |
[14] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2. |
[15] |
D. A. Mendis and M. Rosenberg, Cosmic dusty plasma, Annu. Rev. Astron. Astrophys., 32 (1994), 419-463.
doi: 10.1146/annurev.aa.32.090194.002223. |
[16] |
A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model, J. Statist. Phys., 114 (2004), 1453-1480.
doi: 10.1023/B:JOSS.0000013964.98706.00. |
[17] |
D. Summers and R. M. Thorne, The modified plasma dispersion function, Phys. Fluids, 83 (1991), 1835-1847. |
[1] |
Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039 |
[2] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[3] |
Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic and Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021 |
[4] |
Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159 |
[5] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[6] |
Pu-Zhao Kow, Masato Kimura. The Lewy-Stampacchia inequality for the fractional Laplacian and its application to anomalous unidirectional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2935-2957. doi: 10.3934/dcdsb.2021167 |
[7] |
Fei Meng, Fang Liu. On the inelastic Boltzmann equation for soft potentials with diffusion. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5197-5217. doi: 10.3934/cpaa.2020233 |
[8] |
Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738 |
[9] |
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173 |
[10] |
Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic and Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045 |
[11] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[12] |
Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic and Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403 |
[13] |
Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058 |
[14] |
Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 |
[15] |
Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175 |
[16] |
Dinh-Ke Tran, Tran-Phuong-Thuy Lam. Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evolution Equations and Control Theory, 2020, 9 (3) : 891-914. doi: 10.3934/eect.2020038 |
[17] |
Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations and Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033 |
[18] |
Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064 |
[19] |
Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467 |
[20] |
Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]