December  2011, 4(4): 935-954. doi: 10.3934/krm.2011.4.935

Stagnation-point flow of a rarefied gas impinging obliquely on a plane wall

1. 

Department of Mechanical Engineering and Science, and Advanced Research Institute of Fluid Science and Engineering, Kyoto University, Kyoto 606-8501, Japan

2. 

School of Engineering Science, Faculty of Engineering, Kyoto University, Kyoto 606-8501, Japan

Received  June 2011 Published  November 2011

The steady two-dimensional stagnation-point flow of a rarefied gas impinging obliquely on an infinitely wide plane wall is investigated on the basis of kinetic theory. Assuming that the overall flow field has a length scale of variation much longer than the mean free path of the gas molecules and that the Mach number based on the characteristic flow speed is as small as the Knudsen number (the mean free path divided by the overall length scale of variation), one can exploit the result of the asymptotic theory (weakly nonlinear theory) for the Boltzmann equation, developed by Sone, that describes general steady behavior of a slightly rarefied gas over a smooth boundary [Y. Sone, in: D. Dini (ed.) Rarefied Gas Dynamics, Vol. 2, pp. 737--749. Editrice Tecnico Scientifica, Pisa (1971)]. By solving the fluid-dynamic system of equations given by the theory, the precise description of the velocity and temperature fields around the plane wall is obtained.
Citation: Kazuo Aoki, Yoshiaki Abe. Stagnation-point flow of a rarefied gas impinging obliquely on a plane wall. Kinetic and Related Models, 2011, 4 (4) : 935-954. doi: 10.3934/krm.2011.4.935
References:
[1]

R. Aris, "Vectors, Tensors, and the Basic Equations of Fluid Mechanics," Chap. 1, Dover, New York, 1989.

[2]

J. M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes nonorthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163 (1986), 141-147. doi: 10.1017/S0022112086002240.

[3]

K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszlynder, Dinglers J., 326 (1911), 321-324, 344-348, 357-362, 372-376, 391-393, 407-410.

[4]

J. D. Hoffman, "Numerical Methods for Engineers and Scientists," McGraw-Hill, New York, 1993.

[5]

H. W. Liepmann and A. Roshko, "Elements of Gasdynamics. Galcit Aeronautical Series," John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1957.

[6]

M. J. Martin and I. D. Boyd, Falkner-Skan flow over a wedge with slip boundary conditions, J. Thermophys. Heat Trans., 24 (2010), 263-270.

[7]

H. Okamoto, "Mathematical Analysis of the Navier-Stokes Equations," (Japanese) University of Tokyo Press, Tokyo, 2009.

[8]

L. Rosenhead, ed., "Laminar Boundary Layers," Clarendon, Oxford, 1966.

[9]

Y. Sone, Asymptotic theory of flow of rarefied gas over a smooth boundary I, in"Rarefied Gas Dynamics" (eds. L. Trilling and H. Y. Wachman), Vol. 1, Academic, New York, (1969), 243-253.

[10]

Y. Sone, Asymptotic theory of flow of rarefied gas over a smooth boundary II, in "Rarefied Gas Dynamics" (ed. D. Dini), Vol. 2, Editrice Tecnico Scientifica, Pisa, (1971), 737-749.

[11]

Y. Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, in "Advances in Kinetic Theory and Continuum Mechanics" (eds. R. Gatignol and Soubbaramayer), Springer, Berlin, (1991), 19-31.

[12]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkhäuser, Boston, 2002; Supplementary Notes and Errata: Kyoto University Research Information Repository. Available from: http://hdl.handle.net/2433/66099 .

[13]

Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications," Birkhäuser, Boston, 2007; Supplementary Notes and Errata: Kyoto University Research Information Repository. Available from: http://hdl.handle.net/2433/66098.

[14]

Y. Sone and K. Aoki, Steady gas flows past bodies at small Knudsen numbers-Boltzmann and hydrodynamic systems, Transp. Theory Stat. Phys., 16 (1987), 189-199.

[15]

J. T. Stuart, The viscous flow near a stagnation point when the external flow has a uniform vorticity, J. Aerosp. Sci., 26 (1959), 124-125.

[16]

K. Tamada, Stagnation point flow of rarefied gas, J. Phys. Soc. Jpn., 22 (1967), 1284-1295. doi: 10.1143/JPSJ.22.1284.

[17]

K. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46 (1979), 310-311. doi: 10.1143/JPSJ.46.310.

[18]

C. Y. Wang, Exact solutions of the steady-state Navier-Stokes equations, in "Annu. Rev. Fluid Mech.," Vol. 23, 159-177, Annual Reviews, Palo Alto, CA, 1991.

[19]

C. Y. Wang, Stagnation flows with slip: Exact solutions of the Navier-Stokes equations, Z. angew. Math. Phys., 54 (2003), 184-189. doi: 10.1007/PL00012632.

[20]

C. Y. Wang, Similarity stagnation point solutions of the Navier-Stokes equations--review and extension, Eur. J. Mech. B Fluids, 27 (2008), 678-683. doi: 10.1016/j.euromechflu.2007.11.002.

show all references

References:
[1]

R. Aris, "Vectors, Tensors, and the Basic Equations of Fluid Mechanics," Chap. 1, Dover, New York, 1989.

[2]

J. M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes nonorthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163 (1986), 141-147. doi: 10.1017/S0022112086002240.

[3]

K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszlynder, Dinglers J., 326 (1911), 321-324, 344-348, 357-362, 372-376, 391-393, 407-410.

[4]

J. D. Hoffman, "Numerical Methods for Engineers and Scientists," McGraw-Hill, New York, 1993.

[5]

H. W. Liepmann and A. Roshko, "Elements of Gasdynamics. Galcit Aeronautical Series," John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1957.

[6]

M. J. Martin and I. D. Boyd, Falkner-Skan flow over a wedge with slip boundary conditions, J. Thermophys. Heat Trans., 24 (2010), 263-270.

[7]

H. Okamoto, "Mathematical Analysis of the Navier-Stokes Equations," (Japanese) University of Tokyo Press, Tokyo, 2009.

[8]

L. Rosenhead, ed., "Laminar Boundary Layers," Clarendon, Oxford, 1966.

[9]

Y. Sone, Asymptotic theory of flow of rarefied gas over a smooth boundary I, in"Rarefied Gas Dynamics" (eds. L. Trilling and H. Y. Wachman), Vol. 1, Academic, New York, (1969), 243-253.

[10]

Y. Sone, Asymptotic theory of flow of rarefied gas over a smooth boundary II, in "Rarefied Gas Dynamics" (ed. D. Dini), Vol. 2, Editrice Tecnico Scientifica, Pisa, (1971), 737-749.

[11]

Y. Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, in "Advances in Kinetic Theory and Continuum Mechanics" (eds. R. Gatignol and Soubbaramayer), Springer, Berlin, (1991), 19-31.

[12]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkhäuser, Boston, 2002; Supplementary Notes and Errata: Kyoto University Research Information Repository. Available from: http://hdl.handle.net/2433/66099 .

[13]

Y. Sone, "Molecular Gas Dynamics: Theory, Techniques, and Applications," Birkhäuser, Boston, 2007; Supplementary Notes and Errata: Kyoto University Research Information Repository. Available from: http://hdl.handle.net/2433/66098.

[14]

Y. Sone and K. Aoki, Steady gas flows past bodies at small Knudsen numbers-Boltzmann and hydrodynamic systems, Transp. Theory Stat. Phys., 16 (1987), 189-199.

[15]

J. T. Stuart, The viscous flow near a stagnation point when the external flow has a uniform vorticity, J. Aerosp. Sci., 26 (1959), 124-125.

[16]

K. Tamada, Stagnation point flow of rarefied gas, J. Phys. Soc. Jpn., 22 (1967), 1284-1295. doi: 10.1143/JPSJ.22.1284.

[17]

K. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46 (1979), 310-311. doi: 10.1143/JPSJ.46.310.

[18]

C. Y. Wang, Exact solutions of the steady-state Navier-Stokes equations, in "Annu. Rev. Fluid Mech.," Vol. 23, 159-177, Annual Reviews, Palo Alto, CA, 1991.

[19]

C. Y. Wang, Stagnation flows with slip: Exact solutions of the Navier-Stokes equations, Z. angew. Math. Phys., 54 (2003), 184-189. doi: 10.1007/PL00012632.

[20]

C. Y. Wang, Similarity stagnation point solutions of the Navier-Stokes equations--review and extension, Eur. J. Mech. B Fluids, 27 (2008), 678-683. doi: 10.1016/j.euromechflu.2007.11.002.

[1]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic and Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[2]

Najwa Najib, Norfifah Bachok, Norihan Md Arifin, Fadzilah Md Ali. Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using buongiorno's model. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 423-431. doi: 10.3934/naco.2019041

[3]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic and Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[4]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure and Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

[5]

Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[6]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[7]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[8]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic and Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[9]

Michael Herty, Christian Ringhofer. Averaged kinetic models for flows on unstructured networks. Kinetic and Related Models, 2011, 4 (4) : 1081-1096. doi: 10.3934/krm.2011.4.1081

[10]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[11]

Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540

[12]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[13]

Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281

[14]

Alexander V. Bobylev, Sergey V. Meleshko. On group symmetries of the hydrodynamic equations for rarefied gas. Kinetic and Related Models, 2021, 14 (3) : 469-482. doi: 10.3934/krm.2021012

[15]

Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic and Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033

[16]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[17]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic and Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[18]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[19]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic and Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[20]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]