March  2012, 5(1): 21-50. doi: 10.3934/krm.2012.5.21

Ghost effect for a vapor-vapor mixture

1. 

Institut Polytechnique de Bordeaux, 351, cours de la Libération, 33405 TALENCE Cedex, France

Received  June 2011 Revised  September 2011 Published  January 2012

This paper studies the non linear Boltzmann equation for a two component gas at the small Knudsen number regime. The solution is found from a truncated Hilbert expansion. The first order of the fluid equations shows the ghost effect. The fluid system is solved when the boundary conditions are close enough to each other. Next the boundary conditions for the kinetic system are satisfied by adding for the first and the second order terms of the expansion Knudsen terms. The construction of such boundary layers requires the study of a Milne problem for mixtures. In a last part the rest term of the expansion is rigorously controled by using a new decomposition into a low and a high velocity part.
Citation: Stéphane Brull. Ghost effect for a vapor-vapor mixture. Kinetic and Related Models, 2012, 5 (1) : 21-50. doi: 10.3934/krm.2012.5.21
References:
[1]

K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation, in "Rarefied Gas Dynamic" (eds. T. J. Bartel and M. A. Gallis), AIP, Melville, (2001), 565-574.

[2]

K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture, Journ. Stat. Phys., 112 (2003), 629-655. doi: 10.1023/A:1023876025363.

[3]

K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas, Physics of Fluids, 10 (1998), 1519-1532. doi: 10.1063/1.869671.

[4]

K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas, European Journal of Mechanics B Fluids, 22 (2003), 51-71. doi: 10.1016/S0997-7546(02)00008-0.

[5]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51-97.

[6]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 125-187. doi: 10.1007/s00205-010-0292-z.

[7]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow, to appear in Kinetic and Related Models.

[8]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits, Journ. Stat. Phys., 118 (2005), 849-881. doi: 10.1007/s10955-004-2708-3.

[9]

L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation, Journ. Stat. Phys., 124 (2006), 401-443. doi: 10.1007/s10955-005-8008-8.

[10]

C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas, Commun. Pure and Applied Math., 39 (1986), 323-352.

[11]

S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes," Ph.D thesis, Université de Provence, 2006.

[12]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab, Math. Meth. Appl. Sci., 31 (2008), 153-178. doi: 10.1002/mma.897.

[13]

S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab, Math. Meth. Appl. Sci., 31 (2008), 1653-1666. doi: 10.1002/mma.991.

[14]

S. Brull, Problem of evaporation-condensation for a two component gas in the slab, Kinetic and Related Models, 1 (2008), 185-221. doi: 10.3934/krm.2008.1.185.

[15]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses, Adv. in Diff. Eq., 15 (2010), 1103-1124.

[16]

R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure and Applied Math., 33 (1980), 651-666. doi: 10.1002/cpa.3160330506.

[17]

C. Cercignani, "The Boltzman Equation and its Applications," Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.

[18]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.

[19]

L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog, preprint, 1994.

[20]

R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab, Comm. Math. Phys., 160 (1994), 49-80. doi: 10.1007/BF02099789.

[21]

R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, Journ. Stat. Phys., 78 (1995), 389-412. doi: 10.1007/BF02183355.

[22]

H. Grad, Asymptotic theory of the Boltzmann equation, Physics of Fluids, 6 (1963), 147-181. doi: 10.1063/1.1706716.

[23]

H. Grad, Asymptotic theory of the Boltzmann equation. II, in "1963 Rarefied Gas Dyn." (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, Academic Press, New York, (1962), 26-59.

[24]

H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, in "1965 Proc. Symp. Appl. Math.," Vol. XVII, Amer. Math. Soc., Providence, RI, (1965), 154-183.

[25]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Modeling and Simulations in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1.

[26]

Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation, Physics of Fluids, 8 (1996), 628-638. Erratum: Physics of Fluids, 8 (1996), 841. doi: 10.1063/1.869133.

[27]

Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit, Phys. Fluids, 16 (2004), 952-971. doi: 10.1063/1.1649738.

[28]

S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation, Physics of Fluids, 16 (2004), 79. doi: 10.1063/1.1630324.

[29]

S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit, Physics of Fluids, 16 (2004), 7. doi: 10.1063/1.1723464.

[30]

S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory, Physics of Fluids, 11 (1999), 2743-2756. doi: 10.1063/1.870133.

[31]

S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation, in "The Sixteenth International Conference on Transport Theory, Part I" (Atlanta, GA, 1999), Transport Theory Statist. Phys., 30 (2001), 205-237. Erratum: Transport Theory an Statistical Physic, 31 (2001), 289.

[32]

R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio, Physics of Fluids, 30 (1987), 2073. doi: 10.1063/1.866142.

show all references

References:
[1]

K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation, in "Rarefied Gas Dynamic" (eds. T. J. Bartel and M. A. Gallis), AIP, Melville, (2001), 565-574.

[2]

K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture, Journ. Stat. Phys., 112 (2003), 629-655. doi: 10.1023/A:1023876025363.

[3]

K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas, Physics of Fluids, 10 (1998), 1519-1532. doi: 10.1063/1.869671.

[4]

K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas, European Journal of Mechanics B Fluids, 22 (2003), 51-71. doi: 10.1016/S0997-7546(02)00008-0.

[5]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51-97.

[6]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 125-187. doi: 10.1007/s00205-010-0292-z.

[7]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow, to appear in Kinetic and Related Models.

[8]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits, Journ. Stat. Phys., 118 (2005), 849-881. doi: 10.1007/s10955-004-2708-3.

[9]

L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation, Journ. Stat. Phys., 124 (2006), 401-443. doi: 10.1007/s10955-005-8008-8.

[10]

C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas, Commun. Pure and Applied Math., 39 (1986), 323-352.

[11]

S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes," Ph.D thesis, Université de Provence, 2006.

[12]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab, Math. Meth. Appl. Sci., 31 (2008), 153-178. doi: 10.1002/mma.897.

[13]

S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab, Math. Meth. Appl. Sci., 31 (2008), 1653-1666. doi: 10.1002/mma.991.

[14]

S. Brull, Problem of evaporation-condensation for a two component gas in the slab, Kinetic and Related Models, 1 (2008), 185-221. doi: 10.3934/krm.2008.1.185.

[15]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses, Adv. in Diff. Eq., 15 (2010), 1103-1124.

[16]

R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure and Applied Math., 33 (1980), 651-666. doi: 10.1002/cpa.3160330506.

[17]

C. Cercignani, "The Boltzman Equation and its Applications," Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.

[18]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.

[19]

L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog, preprint, 1994.

[20]

R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab, Comm. Math. Phys., 160 (1994), 49-80. doi: 10.1007/BF02099789.

[21]

R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, Journ. Stat. Phys., 78 (1995), 389-412. doi: 10.1007/BF02183355.

[22]

H. Grad, Asymptotic theory of the Boltzmann equation, Physics of Fluids, 6 (1963), 147-181. doi: 10.1063/1.1706716.

[23]

H. Grad, Asymptotic theory of the Boltzmann equation. II, in "1963 Rarefied Gas Dyn." (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, Academic Press, New York, (1962), 26-59.

[24]

H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, in "1965 Proc. Symp. Appl. Math.," Vol. XVII, Amer. Math. Soc., Providence, RI, (1965), 154-183.

[25]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Modeling and Simulations in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1.

[26]

Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation, Physics of Fluids, 8 (1996), 628-638. Erratum: Physics of Fluids, 8 (1996), 841. doi: 10.1063/1.869133.

[27]

Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit, Phys. Fluids, 16 (2004), 952-971. doi: 10.1063/1.1649738.

[28]

S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation, Physics of Fluids, 16 (2004), 79. doi: 10.1063/1.1630324.

[29]

S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit, Physics of Fluids, 16 (2004), 7. doi: 10.1063/1.1723464.

[30]

S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory, Physics of Fluids, 11 (1999), 2743-2756. doi: 10.1063/1.870133.

[31]

S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation, in "The Sixteenth International Conference on Transport Theory, Part I" (Atlanta, GA, 1999), Transport Theory Statist. Phys., 30 (2001), 205-237. Erratum: Transport Theory an Statistical Physic, 31 (2001), 289.

[32]

R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio, Physics of Fluids, 30 (1987), 2073. doi: 10.1063/1.866142.

[1]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[2]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[3]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic and Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[4]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic and Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[5]

Bilal Al Taki. Global well posedness for the ghost effect system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 345-368. doi: 10.3934/cpaa.2017017

[6]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

[7]

Léo Glangetas, Mohamed Najeme. Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 407-427. doi: 10.3934/krm.2013.6.407

[8]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Erratum to: Ghost effect by curvature in planar Couette flow [1]. Kinetic and Related Models, 2012, 5 (3) : 669-672. doi: 10.3934/krm.2012.5.669

[9]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[10]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic and Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[11]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5627-5640. doi: 10.3934/dcdsb.2020370

[12]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[13]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic and Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[14]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic and Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[15]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[16]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic and Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[17]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[18]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic and Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[19]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic and Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[20]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]