Citation: |
[1] |
C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, "Sur les Inégalités de Sobolev Logarithmiques," Panoramas et Synthèses, 10, Société Mathématique de France, 2000. |
[2] |
A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26 (2001), 43-100. |
[3] |
J.-P. Bartier, J. Dolbeault, R. Illner and M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients, Math. Models and Methods in Applied Sciences, 17 (2007), 327-362.doi: 10.1142/S0218202507001942. |
[4] |
G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation, Commun. Pur. Appl. Math., 61 (2008), 371-408.doi: 10.1002/cpa.20210. |
[5] |
P. Constantin, I. Kevrekidis and E. S. Titi, Asymptotic states of a Smoluchowski equation, Archive Rational Mech. Analysis, 174 (2004), 365-384.doi: 10.1007/s00205-004-0331-8. |
[6] |
P. Constantin, I. Kevrekidis and E. S. Titi, Remarks on a Smoluchowski equation, Disc. and Cont. Dyn. Syst., 11 (2004), 101-112.doi: 10.3934/dcds.2004.11.101. |
[7] |
M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., 19 (1981), 229-243.doi: 10.1002/pol.1981.180190205. |
[8] |
J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, The flashing ratchet: Long time behavior and dynamical systems interpretation, Technical Report 0244, CEREMADE, 2002. Available from: http://www.ceremade.dauphine.fr/preprints/CMD/2002-44.pdf. |
[9] |
G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," Fifth edition, The Clarendon Press, Oxford University Press, New York, 1979. |
[10] |
M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions, J. Multivariate Anal., 19 (1986), 311-328.doi: 10.1016/0047-259X(86)90035-7. |
[11] |
B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows, Archive for Rational Mechanics and Analysis, 181 (2006), 97-148.doi: 10.1007/s00205-005-0411-4. |
[12] |
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998. |
[13] |
C. Le Bris, T. Lelièvre and E. Vanden-Eijnden, Analysis of some discretization schemes for constrained stochastic differential equations, C. R. Math. Acad. Sci. Paris, 346 (2008), 471-476.doi: 10.1016/j.crma.2008.02.016. |
[14] |
J. H. Lee, M. G. Forest and R. Zhou, Alignment and Rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 339-356. |
[15] |
J. D. Meiss, "Differential Dynamical Systems," Mathematical Modeling and Computation, 14, SIAM, Philadelphia, PA, 2007. |
[16] |
I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers," Fifth edition, John Wiley & Sons, Inc., New York, 1991. |
[17] |
A.-S. Sznitman, Topics in propagation of chaos, in "École d'Été de Probabilités de Saint-Flour XIX-1989," Lecture Notes in Math., 1464, Springer, Berlin, (1991), 165-251. |
[18] |
H. Zhang and P.-W. Zhang, A theoretical and numerical study for the rod-like model of a polymeric fluid, Journal of Computational Mathematics, 22 (2004), 319-330. |