Advanced Search
Article Contents
Article Contents

Optimization of a model Fokker-Planck equation

Abstract Related Papers Cited by
  • We discuss optimal control problems for the Fokker--Planck equation arising in radiotherapy treatment planning. We prove existence and uniqueness of an optimal boundary control for a general tracking--type cost functional in three spatial dimensions. Under additional regularity assumptions we prove existence of a continuous necessary first--order optimality system. In the one--dimensional case we analyse a numerical discretization of the Fokker--Planck equation. We prove that the resulting discrete optimality system is a suitable discretization of the continuous first--order system.
    Mathematics Subject Classification: Primary: 85A25, 76P05; Secondary: 49J20, 92C50.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Barnard, M. Frank and M. Herty, Optimal radiotherapy treatment planning using minimum entropy models, preprint, 2011.


    N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling), Math. Mod. Math. Appl. Sci., 15 (2005), iii-viii.


    N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling II), Math. Mod. Math. Appl. Sci., 16 (2006), iii-vii.


    N. Bellomo and P. K. Maini, Preface (Special issue on cancer modelling), Math. Mod. Math. Appl. Sci., 17 (2007), iii-vii.


    K. K. Bucci, A. Bevan and M. Roach III, Advances in radiation therapy: Conventional to 3d, to IMRT, to 4d, and beyond}, CA Cancer J. Clin., 55 (2005), 117-134.


    C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods, Phys. Med. Biol., 43 (1998), 517-528.doi: 10.1088/0031-9155/43/3/004.


    C. Börgers, The radiation therapy planning problem, in "Computational Radiology and Imaging" (Minneapolis, MN, 1997), IMA Volumes in Mathematics and its Applications, 110, Springer, New York, (1999), 1-16.


    T. Brunner, "Forms of Approximate Radiation Transport," Sandia Report, 2002.


    R. G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy, Br. J. Radiol., 58 (1985), 515-528.doi: 10.1259/0007-1285-58-690-515.


    P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation, Transport Theory and Statistical Physics, 16 (1987), 589-636.doi: 10.1080/00411458708204307.


    B. Dubroca and J.-L. Feugeas, Étude théorique et numérique d'une hiérarchie de modèles aux moments pout le transfert radiatif, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 915-920.


    R. Duclous, B. Dubroca and M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy, Physics in Medicine and Biology, 55 (2010), 3843.doi: 10.1088/0031-9155/55/13/018.


    M. Frank, Approximate Models for Radiative Transfer, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 2 (2007), 409-432.


    M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer, Journal of Computational Physics, 218 (2006), 1-18.doi: 10.1016/j.jcp.2006.01.038.


    M. Frank, M. Herty and A. N. Sandjo, Optimal radiotherapy treatment plannig governed by kinetic equations, Mathematical Models and Methods in Applied Sciences, 20 (2010), 661-678.doi: 10.1142/S0218202510004386.


    M. Frank, M. Herty and M. Schäfer, Optimal treatment plannig in radiotherapy based on Boltzmann transport calculation, Mathematical Models and Methods in Applied Sciences, 18 (2008), 573-592.doi: 10.1142/S0218202508002784.


    K. A. Gifford, J. L. Horton Jr., T. A. Wareing, G. Failla and F. Mourtada, Comparioson of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations, Phys. Med. Biol., 51 (2006), 2253-2265.


    H. Hensel, R. Iza-Teran and Norbert Siedow, Deterministic model for dose calculation in photon radiotherapy, Physics in Medicine and Biology, 51 (2006), 675-693.doi: 10.1088/0031-9155/51/3/013.


    M. Herty and A. N. Sandjo, On Optimal treatment plannig in radiotherapy governed by transport equations, Mathematical Models and Methods in Applied Sciences, 21 (2011), 345-359.doi: 10.1142/S0218202511005076.


    M. Herty, R. Pinnau and M. Seaid, Optimal control in radiative transfer, Optimization Methods and Software, 22 (2007), 917-936.


    E. W. Larsen, M. M. Miften, B. A. Fraass and I. A. D. Bruinvis, Electron dose calculations using the method of moments, Med. Phys., 24 (1997), 111-125.doi: 10.1118/1.597920.


    E. W. Larsen, Tutorial: The nature of transport calculations used in radiation oncology, Transp. Theory Stat. Phys., 26 (1997).


    J. L. Lions, "Équations Differentielles Operationnelles et Problèmes aux Limites," Die Grundlehren der mathematischen Wissenschaften, Band 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961.


    D. Jackson, "Fourier Series and Orthogonal Functions," Carus Mathematical Monograph Series, No. 6, Mathematical Assoc. of America, 1941.


    K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, T. Bortfeld and C. Thieke, Multicriteria optimizaton in intensity modulated radiotherapy planning, in "Handbook of Optimization in Medicine," Springer Optim. Appl., 26, Springer, New York, (2009), 123-167.


    J. C. Mark, "The Spherical Harmonics Method. I. (General Development of the Theory)," Document no. CRT-340 (N.R.C. 1588), National Research Council of Canada, Division of Atomic Energy, 1945.


    J. C. Mark, "The Spherical Harmonics Method. II. (Application to Problems with Plane and Spherical Symmetry," Document no. CRT-338 (N.R.C. 1589), National Research Council of Canada, Division of Atomic Energy, 1945.


    R. N. Slaybaugh, M. L. Williams, D. Ilas, D. E. Peplow, B. L. Kirk, T. L. Nichols, Y. Y. Azmy and M. P. Langer, Radiation treatment planning using discrete ordinates codes, Transactions of the American Nuclear Society, 96 (2007), 343-345.


    D. M. Shepard, M. C. Ferris, G. H. Olivera and T. R. Mackie, Optimizing the delivery of radiation therapy to cancer patients, SIAM Rev., 41 (1999), 721-744.


    J. Tervo and P. Kolmonen, Inverse radiotherapy treatment planning model applying Boltzmann-transport equation, Math. Models. Methods. Appl. Sci., 12 (2002), 109-141.doi: 10.1142/S021820250200157X.


    G. G. Steel, J. M. Deacon, G. M. Duchesne, A. Horwich, L. R. Kelland and J. H. Peacock, The dose-rate effect in human tumour cells, Radiotherapy and Oncology, 9 (1987), 299-310.


    G. G. Steel, J. D. Down, J. H. Peacock and T. C. Stephens, Dose-rate effects and the repair of radiation damage, Radiotherapy and Oncology, 5 (1986), 321-331.


    H. Struchtrup, On the number of moments in radiative transfer problems, Annals of Physics, 266 (1998), 1-26.doi: 10.1006/aphy.1998.5791.


    J. Tervo, On coupled Boltzmann transport equation related to radiation therapy, J. Math. Anal. Appl., 335 (2007), 819-840.doi: 10.1016/j.jmaa.2007.01.092.


    J. Tervo, M. Vauhkonen and E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation, Linear Algebra and its Applications, 428 (2008), 1230-1249.doi: 10.1016/j.laa.2007.03.003.


    J. Tervo, P. Kolmonen, M. Vauhkonen, L. M. Heikkinen and J. P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem, Inv. Probl., 15 (1999), 1345-1361.doi: 10.1088/0266-5611/15/5/316.


    F. Tröltzsch, "Optimal Control of Partial Differential Equations. Theory, Methods and Applications," Graduate Studies in Mathematics, 112, AMS, Providence, RI, 2010.

  • 加载中

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint