\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis

Abstract Related Papers Cited by
  • In this paper, we investigate large amplitude solutions to a system of conservation laws which is transformed, by a change of variable, from the well-known Keller-Segel model describing cell (bacteria) movement toward the concentration gradient of the chemical that is consumed by the cells. For the Cauchy problem and initial-boundary value problem, the global unique solvability is proved based on the energy method. In particular, our main purpose is to investigate the convergence rates as the diffusion parameter $\varepsilon$ goes to zero. It is shown that the convergence rates in $L^\infty$-norm are of the order $O\left(\varepsilon\right)$ and $O(\varepsilon^{1/2})$ corresponding to the Cauchy problem and the initial-boundary value problem respectively.
    Mathematics Subject Classification: Primary: 92C17, 35M99; Secondary: 35Q99, 35L65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.doi: 10.1126/science.153.3737.708.

    [2]

    J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.doi: 10.1126/science.166.3913.1588.

    [3]

    K. M. Chen and C. J. Zhu, The zero diffusion limit for nonlinear hyperbolic system with damping and diffusion, J. Hyperbolic Differ. Equ., 5 (2008), 767-783.

    [4]

    H. Frid and V. Shelukhin, Boundary layers for the Navier-Stokes equations of compressible fluids, Comm. Math. Phys., 208 (1999), 309-330.doi: 10.1007/s002200050760.

    [5]

    J. Guo, J. X. Xiao, H. J. Zhao and C. J. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 629-641.

    [6]

    T. Hillen and A. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci., 27 (2004), 1783-1801.doi: 10.1002/mma.569.

    [7]

    S. Jiang and J. W. Zhang, Boundary layers for the Navier-Stokes equations of compressible heat-conducting flows with cylindrical symmetry, SIAM J. Math. Anal., 41 (2009), 237-268.doi: 10.1137/07070005X.

    [8]

    E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.doi: 10.1016/0022-5193(71)90051-8.

    [9]

    H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.doi: 10.1137/S0036139995291106.

    [10]

    H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initating angiogenesis, J. Math. Biol., 42 (2001), 195-238.doi: 10.1007/s002850000037.

    [11]

    T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.doi: 10.1142/S0218202510004830.

    [12]

    T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.doi: 10.1016/j.jde.2010.09.020.

    [13]

    T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184.doi: 10.1007/BF00160334.

    [14]

    H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.doi: 10.1137/S0036139995288976.

    [15]

    L. Z. Ruan and C. J. Zhu, Boundary layer for nonlinear evolution equations with damping and diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 331-352.doi: 10.3934/dcds.2012.32.331.

    [16]

    B. D. Sleeman and H. A. Levine, Partial differential equations of chemotaxis and angiogenesis, Math. Methods Appl. Sci., 24 (2001), 405-426.doi: 10.1002/mma.212.

    [17]

    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 258, Springer-Verlag, New York, 1994.

    [18]

    Y.-G. Wang and Z. P. Xin, Zero-viscosity limit of the linearized compressible Navier-Stokes equations with highly oscillatory forces in the half-plane, SIAM J. Math. Anal., 37 (2005), 1256-1298.doi: 10.1137/040614967.

    [19]

    Z. P. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane, Comm. Pure Appl. Math., 52 (1999), 479-541.doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.0.CO;2-1.

    [20]

    Y. Yang, H. Chen and W. A. Liu, On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.doi: 10.1137/S0036141000337796.

    [21]

    M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.doi: 10.1090/S0002-9939-06-08773-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return