\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$

Abstract Related Papers Cited by
  • We are concerned with the long-time behavior of global strong solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$, where the electric field is governed by the self-consistent Poisson equation. When the regular initial perturbations belong to $H^{4}(\mathbb{R}^{3})\cap \dot{B}_{1,\infty}^{-s}(\mathbb{R}^{3})$ with $s\in [0,1]$, we show that the density and momentum of the system converge to their equilibrium state at the optimal $L^2$-rates $(1+t)^{-\frac{3}{4}-\frac{s}{2}}$ and $(1+t)^{-\frac{1}{4}-\frac{s}{2}}$ respectively, and the decay rate is still $(1+t)^{-\frac{3}{4}}$ for temperature which is proved to be not optimal.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Deckelnick, $L^2$-decay for the compressible Navier-Stokes equations in unbounded domains, Comm. Partial Differential Equations, 18 (1993), 1445-1476.doi: 10.1080/03605309308820981.

    [2]

    D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem, Quart. Appl. Math, 61 (2003), 345-361.

    [3]

    B. Ducomet and A. Zlotnik, Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system, Appl. Math. Lett., 18 (2005), 1190-1198.doi: 10.1016/j.aml.2004.12.002.

    [4]

    B. Ducomet, A remark about global existence for the Navier-Stokes-Poisson system, Appl. Math. Lett., 12 (1999), 31-37.doi: 10.1016/S0893-9659(99)00098-1.

    [5]

    B. Ducomet, E. Feireisl, H. Petzeltová and I. Straškraba, Global in time weak solution for compressible barotropic self-gravitating fluids, Discrete Contin. Dyn. Syst, 11 (2004), 113-130.doi: 10.3934/dcds.2004.11.113.

    [6]

    Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, to appear in Commun. Part. Diff. Equ., 2012.

    [7]

    C. Hao and H.-L. Li, Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differential Equation, 246 (2009), 4791-4812.doi: 10.1016/j.jde.2008.11.019.

    [8]

    L. Hsiao, H.-L. Li, T. Yang and C. Zou, Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbbR^3$, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 2169-2194.

    [9]

    D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in $\mathbbR^3$, Comm. Math. Phy., 257 (2005), 579-619.doi: 10.1007/s00220-005-1351-4.

    [10]

    H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$, Arch. Ration. Mech. Anal., 196 (2010), 681-713.doi: 10.1007/s00205-009-0255-4.

    [11]

    H.-L. Li, T. Yang and C. Zou, Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 1721-1736.

    [12]

    H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$, Math. Methods Appl. Sci., 34 (2011), 670-682.doi: 10.1002/mma.1391.

    [13]

    H.-L. Li and T. Zhang, Large time behavior of solutions to $3D$ compressible Navier-Stokes-Poisson system, Sci. China Math., 55 (2012), 159-177.doi: 10.1007/s11425-011-4280-z.

    [14]

    P. A. Markowich, C. A. Ringhofer and C. Schimeiser, "Semiconductor,'' Springer, 1990.

    [15]

    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.doi: 10.3792/pjaa.55.337.

    [16]

    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.

    [17]

    A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.doi: 10.1007/BF01214738.

    [18]

    V. A. Solonnikov, Evolution free boundary problem for equations of motion viscous compressible self gravitating fluid, Stability Appl. Anal. Contin. Media, 3 (1993), 257-275.

    [19]

    Z. Tan and G. C. Wu, Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions, Nonlinear Anal. Real World Appl., 13 (2012), 650-664.doi: 10.1016/j.nonrwa.2011.08.005.

    [20]

    Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Diff. Equ., 253 (2012), 273-297.doi: 10.1016/j.jde.2012.03.006.

    [21]

    G.-J. Zhang, H.-L. Li and C.-J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^3$, J. Differential Equations, 250 (2011), 866-891.doi: 10.1016/j.jde.2010.07.035.

    [22]

    Y.-H. Zhang and Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow, Math. Methods Appl. Sci., 30 (2007), 305-329.doi: 10.1002/mma.786.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return