December  2012, 5(4): 673-695. doi: 10.3934/krm.2012.5.673

Exponential stability of the solutions to the Boltzmann equation for the Benard problem

1. 

Mathematical Sciences Chalmers 41296 Gothenburg, Sweden

2. 

MEMOCS, Università dell'Aquila, Cisterna di Latina (LT), 04012, Italy

3. 

Dipartimento di Fisica and Unità INFN, Università di Roma Tor Vergata, 00133 Roma

4. 

LATP, CMI, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France

Received  May 2012 Revised  July 2012 Published  November 2012

We complete the result in [2] by showing the exponential decay of the perturbation of the laminar solution below the critical Rayleigh number and of the convective solutions above the critical Rayleigh number, in the kinetic framework.
Citation: Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673
References:
[1]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Academia Sinica, 3 (2008), 51-97.

[2]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Archive for Rational Mechanics, 198 (2010), 125-187. doi: 10.1007/s00205-010-0292-z.

[3]

L. Arkeryd and A. Nouri, Asymptotic techniques for kinetic problems of Boltzmann type, Proceedings of the 3rd Edition of the Summer School in "Methods and Models of Kinetic Theory," Riv. Mat. Univ. Parma, 7 (2007), 1-74.

[4]

P. G. Drazin and W. H. Reid, "Hydrodynamic Instability," Cambridge Univ. Press, Cambridge, 1981.

[5]

R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq Regime, J. Stat. Phys., 90 (1998), 1129-1178.

[6]

C. Foias, O. P. Manley and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Non-Linear Analysis, 11 (1987), 939-967.

[7]

J. M. Ghidaglia, "Etude d'Écoulements Fluides Visqueux Incompressibles: Comportement pour les Grands Temps et Applications aux Attracteurs," Ph. D thesis, Orsay, 1984.

[8]

V. I. Iudovich, On the origin of convection, J. Appl. Math. Mech., 30 (1966), 1193-1199.

[9]

V. I. Iudovich, Free convection and bifurcation, J. Appl. Math. Mech., 31 (1967), 103-114.

[10]

V. I. Iudovich, Stability of convection flows, J. Appl. Math. Mech., 31 (1967), 272-281.

[11]

D. D. Joseph, On the stability of the Boussinesq equation, Arch. Rat. Mech. Anal., 20 (1965), 59-71.

[12]

N. B. Maslova, "Nonlinear Evolution Equations: Kinetic Approach," World Scientific, 1993.

[13]

T. Ma and S. Wang, Dynamic bifurcation and stability in the Rayleigh- Bénard convection, Comm. Math. Sci., 2 (2004), 159-183.

[14]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkhäuser Boston, 2002; Molecular gas dynamics, theory, techniques, and applications, World Scientific, Birkhäuser Boston, 2007.

show all references

References:
[1]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Academia Sinica, 3 (2008), 51-97.

[2]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Archive for Rational Mechanics, 198 (2010), 125-187. doi: 10.1007/s00205-010-0292-z.

[3]

L. Arkeryd and A. Nouri, Asymptotic techniques for kinetic problems of Boltzmann type, Proceedings of the 3rd Edition of the Summer School in "Methods and Models of Kinetic Theory," Riv. Mat. Univ. Parma, 7 (2007), 1-74.

[4]

P. G. Drazin and W. H. Reid, "Hydrodynamic Instability," Cambridge Univ. Press, Cambridge, 1981.

[5]

R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq Regime, J. Stat. Phys., 90 (1998), 1129-1178.

[6]

C. Foias, O. P. Manley and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Non-Linear Analysis, 11 (1987), 939-967.

[7]

J. M. Ghidaglia, "Etude d'Écoulements Fluides Visqueux Incompressibles: Comportement pour les Grands Temps et Applications aux Attracteurs," Ph. D thesis, Orsay, 1984.

[8]

V. I. Iudovich, On the origin of convection, J. Appl. Math. Mech., 30 (1966), 1193-1199.

[9]

V. I. Iudovich, Free convection and bifurcation, J. Appl. Math. Mech., 31 (1967), 103-114.

[10]

V. I. Iudovich, Stability of convection flows, J. Appl. Math. Mech., 31 (1967), 272-281.

[11]

D. D. Joseph, On the stability of the Boussinesq equation, Arch. Rat. Mech. Anal., 20 (1965), 59-71.

[12]

N. B. Maslova, "Nonlinear Evolution Equations: Kinetic Approach," World Scientific, 1993.

[13]

T. Ma and S. Wang, Dynamic bifurcation and stability in the Rayleigh- Bénard convection, Comm. Math. Sci., 2 (2004), 159-183.

[14]

Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkhäuser Boston, 2002; Molecular gas dynamics, theory, techniques, and applications, World Scientific, Birkhäuser Boston, 2007.

[1]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[2]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[3]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[4]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure and Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[5]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for the Ibragimov-Shabat equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 661-673. doi: 10.3934/dcdss.2016020

[6]

Hao Tang, Zhengrong Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2229-2256. doi: 10.3934/dcds.2016.36.2229

[7]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[8]

Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic and Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443

[9]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[10]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[11]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic and Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[12]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[13]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[14]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[15]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[16]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic and Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[17]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[18]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic and Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[19]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic and Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[20]

Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic and Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (1)

[Back to Top]