December  2012, 5(4): 697-728. doi: 10.3934/krm.2012.5.697

A model for the evolution of traffic jams in multi-lane

1. 

Laboratoire J. A. Dieudonné, UMR 7351 CNRS, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France, France

Received  January 2012 Revised  May 2012 Published  November 2012

In [8], Berthelin, Degond, Delitala and Rascle introduced a traffic flow model describing the formation and the dynamics of traffic jams. This model consists of a Pressureless Gas Dynamics system under a maximal constraint on the density and is derived through a singular limit of the Aw-Rascle model. In the present paper we propose an improvement of this model by allowing the road to be multi-lane piecewise. The idea is to use the maximal constraint to model the number of lanes. We also add in the model a parameter $\alpha$ which model the various speed limitations according to the number of lanes. We present the dynamical behaviour of clusters (traffic jams) and by approximation with such solutions, we obtain an existence result of weak solutions for any initial data.
Citation: Florent Berthelin, Damien Broizat. A model for the evolution of traffic jams in multi-lane. Kinetic and Related Models, 2012, 5 (4) : 697-728. doi: 10.3934/krm.2012.5.697
References:
[1]

A. Aw, A. Klar, A. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.

[2]

A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.

[3]

M. Bando, K. Hesebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042. doi: 10.1103/PhysRevE.51.1035.

[4]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677.

[5]

F. Berthelin, Existence and weak stability for a two-phase model with unilateral constraint, Math. Models & Methods in the Applied Sciences, 12 (2002), 249-272. doi: 10.1142/S0218202502001635.

[6]

F. Berthelin, Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint, Math. Mod. and Numer. Anal., 37 (2003), 479-494.

[7]

F. Berthelin and F. Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss, Annales de l'Institut H. Poincaré, Anal. non linéaire, 20 (2003), 975-997. doi: 10.1016/S0294-1449(03)00012-X.

[8]

F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, ARMA, Arch. Ration. Mech. Anal., 187 (2008), 185-220. doi: 10.1007/s00205-007-0061-9.

[9]

F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, M. Rascle and J. Royer, A traffic-flow model with constraints for the modeling of traffic jams, Math. Models Methods Appl. Sci. suppl., 18 (2008), 1269-1298.

[10]

F. Bouchut, Y. Brenier, J. Cortes and J. F. Ripoll, A hierarchy of models for two-phase flows, J. Nonlinear Science, 10 (2000), 639-660.

[11]

Y. Brenier and E. Grenier, Sticky particles and scalar conservations laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.

[12]

R. M. Colombo, On a $2\times 2$ hyperbolic traffic flow model, Math. Comp. Modeling, 35 (2002), 683-688. doi: 10.1016/S0895-7177(02)80029-2.

[13]

C. Daganzo, Requiem for second order fluid approximations of traffic flow, Transp. Res. B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z.

[14]

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinetic and Related Models, 1 (2008), 279-293.

[15]

W. E, Y. G. Rykov and Y. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.

[16]

D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567.

[17]

D. Helbing, Improved fluid-dynamic model for vehicular traffic, Phys. Rev. E, 51 (1995), 3164-3169. doi: 10.1103/PhysRevE.51.3164.

[18]

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2001), 1067-1141.

[19]

A. Klar, R. D. Kühne and R. Wegener, Mathematical models for vehicular traffic, Surveys Math. Ind., 6 (1996), 215-239.

[20]

A. Klar and R. Wegener, Enskog-like kinetic models for vehicular traffic, J. Stat. Phys., (1997), 91-114.

[21]

M. J. Lighthill and J. B. Whitham, On kinematic waves. I: flow movement in long rivers. II: A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 1749-1766.

[22]

P. Nelson, A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions, Transp. Theory Stat. Phys., 24 (1995), 383-408. doi: 10.1080/00411459508205136.

[23]

H. J. Payne, "Models of Freeway Traffic and Control," Simulation Council, New York, 1971.

[24]

H. J. Payne, FREFLO: A macroscopic simulation model of freeway traffic, Transportation Research Record, 722 (1979), 68-75.

[25]

I. Prigogine, A Boltzmann-like approach to the statistical theory of traffic flow, Theory of Traffic Flow, (ed. R. Herman), (1961), 158-164.

[26]

I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier publishing co, New York, 1971.

[27]

P. I. Richards, Shock waves on a highway, Operations Research, 4 (1956), 42-51.

[28]

M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Res. B, 36 (2002), 275-298. doi: 10.1016/S0191-2615(00)00050-3.

show all references

References:
[1]

A. Aw, A. Klar, A. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.

[2]

A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.

[3]

M. Bando, K. Hesebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042. doi: 10.1103/PhysRevE.51.1035.

[4]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677.

[5]

F. Berthelin, Existence and weak stability for a two-phase model with unilateral constraint, Math. Models & Methods in the Applied Sciences, 12 (2002), 249-272. doi: 10.1142/S0218202502001635.

[6]

F. Berthelin, Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint, Math. Mod. and Numer. Anal., 37 (2003), 479-494.

[7]

F. Berthelin and F. Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss, Annales de l'Institut H. Poincaré, Anal. non linéaire, 20 (2003), 975-997. doi: 10.1016/S0294-1449(03)00012-X.

[8]

F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, ARMA, Arch. Ration. Mech. Anal., 187 (2008), 185-220. doi: 10.1007/s00205-007-0061-9.

[9]

F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, M. Rascle and J. Royer, A traffic-flow model with constraints for the modeling of traffic jams, Math. Models Methods Appl. Sci. suppl., 18 (2008), 1269-1298.

[10]

F. Bouchut, Y. Brenier, J. Cortes and J. F. Ripoll, A hierarchy of models for two-phase flows, J. Nonlinear Science, 10 (2000), 639-660.

[11]

Y. Brenier and E. Grenier, Sticky particles and scalar conservations laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.

[12]

R. M. Colombo, On a $2\times 2$ hyperbolic traffic flow model, Math. Comp. Modeling, 35 (2002), 683-688. doi: 10.1016/S0895-7177(02)80029-2.

[13]

C. Daganzo, Requiem for second order fluid approximations of traffic flow, Transp. Res. B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z.

[14]

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinetic and Related Models, 1 (2008), 279-293.

[15]

W. E, Y. G. Rykov and Y. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.

[16]

D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567.

[17]

D. Helbing, Improved fluid-dynamic model for vehicular traffic, Phys. Rev. E, 51 (1995), 3164-3169. doi: 10.1103/PhysRevE.51.3164.

[18]

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2001), 1067-1141.

[19]

A. Klar, R. D. Kühne and R. Wegener, Mathematical models for vehicular traffic, Surveys Math. Ind., 6 (1996), 215-239.

[20]

A. Klar and R. Wegener, Enskog-like kinetic models for vehicular traffic, J. Stat. Phys., (1997), 91-114.

[21]

M. J. Lighthill and J. B. Whitham, On kinematic waves. I: flow movement in long rivers. II: A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 1749-1766.

[22]

P. Nelson, A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions, Transp. Theory Stat. Phys., 24 (1995), 383-408. doi: 10.1080/00411459508205136.

[23]

H. J. Payne, "Models of Freeway Traffic and Control," Simulation Council, New York, 1971.

[24]

H. J. Payne, FREFLO: A macroscopic simulation model of freeway traffic, Transportation Research Record, 722 (1979), 68-75.

[25]

I. Prigogine, A Boltzmann-like approach to the statistical theory of traffic flow, Theory of Traffic Flow, (ed. R. Herman), (1961), 158-164.

[26]

I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier publishing co, New York, 1971.

[27]

P. I. Richards, Shock waves on a highway, Operations Research, 4 (1956), 42-51.

[28]

M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Res. B, 36 (2002), 275-298. doi: 10.1016/S0191-2615(00)00050-3.

[1]

Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch. Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6 (3) : 351-381. doi: 10.3934/nhm.2011.6.351

[2]

Matteo Piu, Gabriella Puppo. Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022006

[3]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[4]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[5]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[6]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[7]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[8]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[9]

Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431

[10]

Yongki Lee, Hailiang Liu. Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 323-339. doi: 10.3934/dcds.2015.35.323

[11]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16 (1) : 69-90. doi: 10.3934/nhm.2020034

[12]

Michael Burger, Simone Göttlich, Thomas Jung. Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14 (2) : 265-288. doi: 10.3934/nhm.2019011

[13]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[14]

Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033

[15]

Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012

[16]

Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481

[17]

Simone Göttlich, Oliver Kolb, Sebastian Kühn. Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9 (2) : 315-334. doi: 10.3934/nhm.2014.9.315

[18]

Sharif E. Guseynov, Shirmail G. Bagirov. Distributed mathematical models of undetermined "without preference" motion of traffic flow. Conference Publications, 2011, 2011 (Special) : 589-600. doi: 10.3934/proc.2011.2011.589

[19]

Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599

[20]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]