December  2012, 5(4): 729-742. doi: 10.3934/krm.2012.5.729

Time evolution of a Vlasov-Poisson plasma with magnetic confinement

1. 

Dipartimento di Matematica, Università di Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma

2. 

Dipartimento di Matematica "Guido Castelnuovo", Università La Sapienza P.le A. Moro 5, 00185 Roma, Italy, Italy

Received  June 2012 Revised  June 2012 Published  November 2012

We study the time evolution of a Vlasov-Poisson plasma moving in an infinite cylinder, in which it is confined by an unbounded external magnetic field. This field depends only on the distance from the border of the cylinder, is tangent to the border and singular on it. We prove the existence and uniqueness of the solution, and also its confinement inside the cylinder for all times, i.e. the external field behaves like a magnetic mirror. Possible generalizations are discussed.
Citation: Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729
References:
[1]

J. Batt and G. Rein, Global classical solutions of a periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris, 313 S. I. (1991), 411-416.

[2]

S. Caprino and C. Marchioro, On the plasma-charge model, Kinetic and Related Models, 3 (2010), 241-254.

[3]

S. Caprino and C. Marchioro, On a charge interacting with a plasma of unbounded mass, Kinetic and Related Models, 4 (2011), 215-226.

[4]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass, Comm. Part. Diff. Eq., 27 (2002), 791-808.

[5]

S. Caprino, C. Marchioro, E. Miot and M. Pulvirenti, On the attractive plasma-charge system in 2-d, Comm. Part. Diff. Eq., 37 (2012), 1237-1272. doi: 10.1080/3605302.2011.653032.

[6]

R. Glassey, "The Cauchy Problem in Kinetic Theory," SIAM: Philadelphia, PA, 1996.

[7]

P. E. Jabin, The Vlasov-Poisson system with infinite mass and energy, J. Stat. Phys., 103 (2001), 1107-1123.

[8]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1996), 415-430.

[9]

C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges, Arch. Rat. Mech. Anal., 201 (2011), 1-26. doi: 10.1007/s00205-010-0388-5.

[10]

S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics, Comm. Part. Diff. Eq., 31 (2006), 349-370.

[11]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Jour. Diff. Eq., 95 (1992), 281-303.

[12]

G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, Math. Nachr., 191 (1998), 269-278. doi: 10.1002/mana.19981910114.

[13]

D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation, Math. Mod. Meth. Appl. Sci., 19 (2009), 199-228.

[14]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Part. Diff. Eq., 16 (1991), 1313-1335.

[15]

J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics, Comm. Part. Diff. Eq., 28 (2003), 1057-1084.

[16]

J. Schaeffer, Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior, Kinetic and Related Models, 5 (2012), 129-153. doi: 10.3934/krm.2012.5.129.

[17]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, Jour. Math. Anal. Appl., 176 (1993), 76-91.

show all references

References:
[1]

J. Batt and G. Rein, Global classical solutions of a periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris, 313 S. I. (1991), 411-416.

[2]

S. Caprino and C. Marchioro, On the plasma-charge model, Kinetic and Related Models, 3 (2010), 241-254.

[3]

S. Caprino and C. Marchioro, On a charge interacting with a plasma of unbounded mass, Kinetic and Related Models, 4 (2011), 215-226.

[4]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass, Comm. Part. Diff. Eq., 27 (2002), 791-808.

[5]

S. Caprino, C. Marchioro, E. Miot and M. Pulvirenti, On the attractive plasma-charge system in 2-d, Comm. Part. Diff. Eq., 37 (2012), 1237-1272. doi: 10.1080/3605302.2011.653032.

[6]

R. Glassey, "The Cauchy Problem in Kinetic Theory," SIAM: Philadelphia, PA, 1996.

[7]

P. E. Jabin, The Vlasov-Poisson system with infinite mass and energy, J. Stat. Phys., 103 (2001), 1107-1123.

[8]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1996), 415-430.

[9]

C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges, Arch. Rat. Mech. Anal., 201 (2011), 1-26. doi: 10.1007/s00205-010-0388-5.

[10]

S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics, Comm. Part. Diff. Eq., 31 (2006), 349-370.

[11]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Jour. Diff. Eq., 95 (1992), 281-303.

[12]

G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, Math. Nachr., 191 (1998), 269-278. doi: 10.1002/mana.19981910114.

[13]

D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation, Math. Mod. Meth. Appl. Sci., 19 (2009), 199-228.

[14]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Part. Diff. Eq., 16 (1991), 1313-1335.

[15]

J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics, Comm. Part. Diff. Eq., 28 (2003), 1057-1084.

[16]

J. Schaeffer, Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior, Kinetic and Related Models, 5 (2012), 129-153. doi: 10.3934/krm.2012.5.129.

[17]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, Jour. Math. Anal. Appl., 176 (1993), 76-91.

[1]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[2]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[3]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic and Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[4]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[5]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[6]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[7]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[8]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[9]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[10]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[11]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[12]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[13]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021

[14]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[15]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[16]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[17]

Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic and Related Models, 2022, 15 (4) : 569-604. doi: 10.3934/krm.2021039

[18]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic and Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[19]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[20]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (172)
  • HTML views (0)
  • Cited by (12)

[Back to Top]