
Previous Article
On the gain of regularity for the positive part of Boltzmann collision operator associated with softpotentials
 KRM Home
 This Issue

Next Article
Time evolution of a VlasovPoisson plasma with magnetic confinement
Global existence in critical spaces for the compressible magnetohydrodynamic equations
1.  Department of Mathematics and Physics, Xiamen University of Technology, Xiamen, Fujian 361024, China 
2.  School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China 
References:
show all references
References:
[1] 
Yihang Hao, XianGao Liu. The existence and blowup criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225236. doi: 10.3934/cpaa.2014.13.225 
[2] 
Hongmei Cao, HaoGuang Li, ChaoJiang Xu, Jiang Xu. Wellposedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829884. doi: 10.3934/krm.2019032 
[3] 
Jihong Zhao, Ting Zhang, Qiao Liu. Global wellposedness for the dissipative system modeling electrohydrodynamics with large vertical velocity component in critical Besov space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 555582. doi: 10.3934/dcds.2015.35.555 
[4] 
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 6585. doi: 10.3934/jdg.2019005 
[5] 
Sigmund Selberg. Global existence in the critical space for the Thirring and GrossNeveu models coupled with the electromagnetic field. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 25552569. doi: 10.3934/dcds.2018107 
[6] 
P. Blue, J. Colliander. Global wellposedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$critical NLS. Communications on Pure and Applied Analysis, 2006, 5 (4) : 691708. doi: 10.3934/cpaa.2006.5.691 
[7] 
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the NavierStokesNernstPlanckPoisson system in critical BesovMorrey spaces. Discrete and Continuous Dynamical Systems  B, 2021, 26 (6) : 34093425. doi: 10.3934/dcdsb.2020237 
[8] 
Wei Luo, Zhaoyang Yin. Local wellposedness in the critical Besov space and persistence properties for a threecomponent CamassaHolm system with Npeakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 50475066. doi: 10.3934/dcds.2016019 
[9] 
Anthony Suen. Global regularity for the 3D compressible magnetohydrodynamics with general pressure. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 29272943. doi: 10.3934/dcds.2022004 
[10] 
Matti Lassas, Eero Saksman, Samuli Siltanen. Discretizationinvariant Bayesian inversion and Besov space priors. Inverse Problems and Imaging, 2009, 3 (1) : 87122. doi: 10.3934/ipi.2009.3.87 
[11] 
Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to ChemotaxisNavierStokes equations in critical Besov spaces. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 34273460. doi: 10.3934/dcdsb.2018284 
[12] 
Hongjie Dong, Dapeng Du. Global wellposedness and a decay estimate for the critical dissipative quasigeostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 10951101. doi: 10.3934/dcds.2008.21.1095 
[13] 
Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 20212057. doi: 10.3934/dcds.2019085 
[14] 
Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global wellposedness and existence of the global attractor for the KadomtsevPetviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 12831307. doi: 10.3934/dcds.2020078 
[15] 
Qunyi Bie, Haibo Cui, Qiru Wang, ZhengAn Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 28792910. doi: 10.3934/dcds.2018124 
[16] 
Alexander Blokh, Clinton Curry, Lex Oversteegen. Density of orbits in laminations and the space of critical portraits. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 20272039. doi: 10.3934/dcds.2012.32.2027 
[17] 
Marco Bravin, Luis Vega. On the one dimensional cubic NLS in a critical space. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 25632584. doi: 10.3934/dcds.2021203 
[18] 
Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems  B, 2019, 24 (7) : 33353356. doi: 10.3934/dcdsb.2018323 
[19] 
Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 20772102. doi: 10.3934/dcds.2017089 
[20] 
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for timespace fractional Kirchhofftype diffusion equations. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 13011322. doi: 10.3934/dcdsb.2021091 
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]