-
Previous Article
Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials
- KRM Home
- This Issue
-
Next Article
Mathematical theory and numerical methods for Bose-Einstein condensation
Diffusion asymptotics of a kinetic model for gaseous mixtures
1. | UPMC Univ Paris 06, UMR 7598 LJLL, Paris, F-75005 |
2. | MAP5, CNRS UMR 8145, Université Paris Descartes, Sorbonne Paris Cité, 45 Rue des Saints Pères, F-75006 Paris, France |
3. | CMLA, ENS Cachan, PRES UniverSud Paris, 61 Avenue du Président Wilson, F-94235 Cachan Cedex, France |
4. | Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1 - 27100 Pavia |
References:
show all references
References:
[1] |
Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic and Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033 |
[2] |
Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic and Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79 |
[3] |
Vincent Giovangigli, Wen-An Yong. Erratum: ``Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion''. Kinetic and Related Models, 2016, 9 (4) : 813-813. doi: 10.3934/krm.2016018 |
[4] |
Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036 |
[5] |
Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301 |
[6] |
Juan Campos, Rafael Obaya, Massimo Tarallo. Favard theory and fredholm alternative for disconjugate recurrent second order equations. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1199-1232. doi: 10.3934/cpaa.2017059 |
[7] |
Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic and Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755 |
[8] |
Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic and Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044 |
[9] |
Marzia Bisi, Laurent Desvillettes. Some remarks about the scaling of systems of reactive Boltzmann equations. Kinetic and Related Models, 2008, 1 (4) : 515-520. doi: 10.3934/krm.2008.1.515 |
[10] |
Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205 |
[11] |
Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic and Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036 |
[12] |
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 |
[13] |
Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic and Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761 |
[14] |
Feride Tığlay. Integrating evolution equations using Fredholm determinants. Electronic Research Archive, 2021, 29 (2) : 2141-2147. doi: 10.3934/era.2020109 |
[15] |
Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267 |
[16] |
Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004 |
[17] |
Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 |
[18] |
Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic and Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277 |
[19] |
William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020 |
[20] |
Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]