-
Previous Article
Large deviations for the solution of a Kac-type kinetic equation
- KRM Home
- This Issue
- Next Article
Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain |
2. | School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom |
3. | Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue de États-Unis, 78035 Versailles cedex, France |
References:
[1] |
M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362.
doi: 10.1016/j.matpur.2011.01.003. |
[2] |
M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.
doi: 10.1142/S021820251000443X. |
[3] |
M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.
doi: 10.1016/j.anihpc.2004.06.001. |
[4] |
P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases]," Ph.D thesis, Paris, 2011. |
[5] |
P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation, Comm. Math. Sci., 7 (2009), 503-510. |
[6] |
J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations," Lecture notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986. |
[7] |
P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16 (2006), 1125-1153.
doi: 10.1142/S0218202506001480. |
[8] |
P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris, 338 (2004), 697-702.
doi: 10.1016/j.crma.2004.03.006. |
[9] |
P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl. (9), 84 (2005), 1235-1260.
doi: 10.1016/j.matpur.2005.04.001. |
[10] |
B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. |
[11] |
B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210 (2005), 155-177.
doi: 10.1016/j.jde.2004.10.018. |
[12] |
B. Perthame and D. Salort, Distributed elapsed time model for neuron networks, in preparation. |
[13] |
R. Wong, "Asymptotic Approximation of Integrals," Corrected reprint of the 1989 original, Classics in Applied Mathematics, 34, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.
doi: 10.1137/1.9780898719260. |
show all references
References:
[1] |
M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362.
doi: 10.1016/j.matpur.2011.01.003. |
[2] |
M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.
doi: 10.1142/S021820251000443X. |
[3] |
M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.
doi: 10.1016/j.anihpc.2004.06.001. |
[4] |
P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases]," Ph.D thesis, Paris, 2011. |
[5] |
P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation, Comm. Math. Sci., 7 (2009), 503-510. |
[6] |
J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations," Lecture notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986. |
[7] |
P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16 (2006), 1125-1153.
doi: 10.1142/S0218202506001480. |
[8] |
P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering, C. R. Math. Acad. Sci. Paris, 338 (2004), 697-702.
doi: 10.1016/j.crma.2004.03.006. |
[9] |
P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl. (9), 84 (2005), 1235-1260.
doi: 10.1016/j.matpur.2005.04.001. |
[10] |
B. Perthame, "Transport Equations in Biology," Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. |
[11] |
B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210 (2005), 155-177.
doi: 10.1016/j.jde.2004.10.018. |
[12] |
B. Perthame and D. Salort, Distributed elapsed time model for neuron networks, in preparation. |
[13] |
R. Wong, "Asymptotic Approximation of Integrals," Corrected reprint of the 1989 original, Classics in Applied Mathematics, 34, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.
doi: 10.1137/1.9780898719260. |
[1] |
Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683 |
[2] |
Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625 |
[3] |
Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058 |
[4] |
Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897 |
[5] |
Yang Liu. Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28 (1) : 311-326. doi: 10.3934/era.2020018 |
[6] |
Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163 |
[7] |
Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509 |
[8] |
Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098 |
[9] |
Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 |
[10] |
Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041 |
[11] |
Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873 |
[12] |
Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112 |
[13] |
Oscar Jarrín, Manuel Fernando Cortez. On the long-time behavior for a damped Navier-Stokes-Bardina model. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3661-3707. doi: 10.3934/dcds.2022028 |
[14] |
Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001 |
[15] |
Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 239-252. doi: 10.3934/dcds.2004.10.239 |
[16] |
Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 31-46. doi: 10.3934/dcdss.2020002 |
[17] |
Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 |
[18] |
Min Chen, Olivier Goubet. Long-time asymptotic behavior of two-dimensional dissipative Boussinesq systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 37-53. doi: 10.3934/dcdss.2009.2.37 |
[19] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[20] |
Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]