-
Previous Article
Collisionless kinetic theory of rolling molecules
- KRM Home
- This Issue
-
Next Article
Structure of entropies in dissipative multicomponent fluids
Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation
1. | Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l'Université, BP.12, 76801 Saint Etienne du Rouvray, France, France |
References:
[1] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000), 327-355.
doi: 10.1007/s002050000083. |
[2] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal., 255 (2008), 2013-2066.
doi: 10.1016/j.jfa.2008.07.004. |
[3] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.
doi: 10.1016/j.jfa.2011.10.007. |
[4] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, global existence for hard potential, Analysis and Applications, 9 (2011), 113-134.
doi: 10.1142/S0219530511001777. |
[5] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Rat. Mech. Anal., 202 (2011), 599-661.
doi: 10.1007/s00205-011-0432-0. |
[6] |
L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. |
[7] |
L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc., 361 (2009), 1731-1747.
doi: 10.1090/S0002-9947-08-04574-1. |
[8] |
L. Desvillettes and F. Golse, On a model Boltzmann equation without angular cutoff, Diff. Int. Eq., 13 (2000), 567-594. |
[9] |
L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Part. Diff. Equations, 29 (2004), 133-155.
doi: 10.1081/PDE-120028847. |
[10] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators," Corrected reprint of the 1985 original. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 275, Springer-Verlag, Berlin, 1994. |
[11] |
Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinetic and Related Models, 1 (2008), 453-489.
doi: 10.3934/krm.2008.1.453. |
[12] |
N. Lekrine and C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation, Kinetic and Related Models, 2 (2009), 647-666.
doi: 10.3934/krm.2009.2.647. |
[13] |
P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London A, 346 (1994), 191-204.
doi: 10.1098/rsta.1994.0018. |
[14] |
Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl., 1 (2010), 139-159.
doi: 10.1007/s11868-010-0008-z. |
[15] |
Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., 24 (2009), 187-212.
doi: 10.3934/dcds.2009.24.187. |
[16] |
S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1 (1984), 141-156.
doi: 10.1007/BF03167864. |
[17] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.
doi: 10.1007/s002050050106. |
[18] |
T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff, J. Differential Equations, 253 (2012), 1172-1190.
doi: 10.1016/j.jde.2012.04.023. |
show all references
References:
[1] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000), 327-355.
doi: 10.1007/s002050000083. |
[2] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Uncertainty principle and kinetic equations, J. Funct. Anal., 255 (2008), 2013-2066.
doi: 10.1016/j.jfa.2008.07.004. |
[3] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.
doi: 10.1016/j.jfa.2011.10.007. |
[4] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, global existence for hard potential, Analysis and Applications, 9 (2011), 113-134.
doi: 10.1142/S0219530511001777. |
[5] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Rat. Mech. Anal., 202 (2011), 599-661.
doi: 10.1007/s00205-011-0432-0. |
[6] |
L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. |
[7] |
L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc., 361 (2009), 1731-1747.
doi: 10.1090/S0002-9947-08-04574-1. |
[8] |
L. Desvillettes and F. Golse, On a model Boltzmann equation without angular cutoff, Diff. Int. Eq., 13 (2000), 567-594. |
[9] |
L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Part. Diff. Equations, 29 (2004), 133-155.
doi: 10.1081/PDE-120028847. |
[10] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators," Corrected reprint of the 1985 original. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 275, Springer-Verlag, Berlin, 1994. |
[11] |
Z. H. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinetic and Related Models, 1 (2008), 453-489.
doi: 10.3934/krm.2008.1.453. |
[12] |
N. Lekrine and C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation, Kinetic and Related Models, 2 (2009), 647-666.
doi: 10.3934/krm.2009.2.647. |
[13] |
P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London A, 346 (1994), 191-204.
doi: 10.1098/rsta.1994.0018. |
[14] |
Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl., 1 (2010), 139-159.
doi: 10.1007/s11868-010-0008-z. |
[15] |
Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., 24 (2009), 187-212.
doi: 10.3934/dcds.2009.24.187. |
[16] |
S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., 1 (1984), 141-156.
doi: 10.1007/BF03167864. |
[17] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.
doi: 10.1007/s002050050106. |
[18] |
T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff, J. Differential Equations, 253 (2012), 1172-1190.
doi: 10.1016/j.jde.2012.04.023. |
[1] |
Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic and Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647 |
[2] |
Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic and Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036 |
[3] |
Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic and Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299 |
[4] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic and Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919 |
[5] |
Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159 |
[6] |
Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic and Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025 |
[7] |
Fedor Nazarov, Kevin Zumbrun. Instantaneous smoothing and exponential decay of solutions for a degenerate evolution equation with application to Boltzmann's equation. Kinetic and Related Models, 2022, 15 (4) : 729-752. doi: 10.3934/krm.2022012 |
[8] |
Hao Tang, Zhengrong Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2229-2256. doi: 10.3934/dcds.2016.36.2229 |
[9] |
Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056 |
[10] |
Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic and Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453 |
[11] |
Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic and Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024 |
[12] |
Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187 |
[13] |
Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic and Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445 |
[14] |
Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic and Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479 |
[15] |
V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731 |
[16] |
Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012 |
[17] |
Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333 |
[18] |
Zheng-an Yao, Yu-Long Zhou. High order approximation for the Boltzmann equation without angular cutoff under moderately soft potentials. Kinetic and Related Models, 2020, 13 (3) : 435-478. doi: 10.3934/krm.2020015 |
[19] |
Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020 |
[20] |
Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]