Citation: |
[1] |
W. B. Arthur, S. N. Durlauf and D. A. Lane, eds., "The Economy as an Evolving Complex System II," Studies in the Sciences of Complexity, Vol. XXVII, Addison-Wesley, 1997. |
[2] |
D. Acemoglu and J. A. Robinson, "Economic Origins of Dictatorship and Democracy," Cambridge University Press, 2005.doi: 10.1017/CBO9780511510809. |
[3] |
D. Acemoglu, D. Ticchi and A. Vindigni, Emergence and persistence of inefficient states, J. Eur. Econ. Assoc., 9 (2011), 177-208. |
[4] |
G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinet. Relat. Models, 1 (2008), 249-278.doi: 10.3934/krm.2008.1.249. |
[5] |
G. Ajmone Marsan, On the modelling and simulation of the competition for a secession under media influence by active particles methods and functional subsystems decomposition, Comput. Math. Appl., 57 (2009), 710-728.doi: 10.1016/j.camwa.2008.09.003. |
[6] |
A. Alesina and E. Spolaore, War, peace, and the size of countries, J. Public Econ., 89 (2005), 1333-1354. |
[7] |
L. Arlotti and N. Bellomo, Solution of a new class of nonlinear kinetic models of population dynamics, Appl. Math. Lett., 9 (1996), 65-70.doi: 10.1016/0893-9659(96)00014-6. |
[8] |
L. Arlotti, N. Bellomo and E. De Angelis, Generalized kinetic (Boltzmann) models: Mathematical structures and applications, Math. Models Methods Appl. Sci., 12 (2002), 567-591.doi: 10.1142/S0218202502001799. |
[9] |
L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl. Math. Lett., 25 (2012), 490-495.doi: 10.1016/j.aml.2011.09.043. |
[10] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.doi: 10.1073/pnas.0711437105. |
[11] |
A.-L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks, Physica A, 272 (1999), 173-187. |
[12] |
U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity, Nature, 458 (2009), 1018-1020.doi: 10.1038/nature07950. |
[13] |
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), 1140006, 29 pp.doi: 10.1142/S0218202511400069. |
[14] |
A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach, Math. Models Methods Appl. Sci., 22 (2012), 1140003, 35 pp.doi: 10.1142/S0218202511400033. |
[15] |
M. L. Bertotti and M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Anal. Real World Appl., 9 (2008), 183-196.doi: 10.1016/j.nonrwa.2006.09.012. |
[16] |
M. L. Bertotti and M. Delitala, On a discrete generalized kinetic approach for modelling persuader's influence in opinion formation processes, Math. Comput. Modelling, 48 (2008), 1107-1121.doi: 10.1016/j.mcm.2007.12.021. |
[17] |
C. F. Camerer, "Behavioral Game Theory: Experiments in Strategic Interaction," Princeton University Press, 2003. |
[18] |
V. Coscia, L. Fermo and N. Bellomo, On the mathematical theory of living systems II: The interplay between mathematics and system biology, Comput. Math. Appl., 62 (2011), 3902-3911.doi: 10.1016/j.camwa.2011.09.043. |
[19] |
E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups, J. Math. Biol., 62 (2011), 569-588.doi: 10.1007/s00285-010-0347-7. |
[20] |
M. Delitala, P. Pucci and M. C. Salvatori, From methods of the mathematical kinetic theory for active particles to modeling virus mutations, Math. Models Methods Appl. Sci., 21 (2011), 843-870.doi: 10.1142/S0218202511005398. |
[21] |
B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, P. R. Soc. London Ser. A Math. Phys. Eng. Sci., 465 (2009), 3687-3708.doi: 10.1098/rspa.2009.0239. |
[22] |
D. Helbing, "Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes," Second edition, Springer, Heidelberg, 2010.doi: 10.1007/978-3-642-11546-2. |
[23] |
J. C. Nuño, M. A. Herrero and M. Primicerio, A mathematical model of criminal-prone society, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 193-207.doi: 10.3934/dcdss.2011.4.193. |
[24] |
D. G. Rand, S. Arbesman and N. A. Christakis, Dynamic social networks promote cooperation in experiments with humans, Proc. Natl. Acad. Sci. USA, 108 (2011), 19193-19198. |
[25] |
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature, 461 (2009), 53-59.doi: 10.1038/nature08227. |
[26] |
H. A. Simon, Theories of decision-making in economics and behavioral science, Am. Econ. Rev., 49 (1959), 253-283. |
[27] |
H. A. Simon, "Models of Bounded Rationality: Economic Analysis and Public Policy," Vol. 1, MIT Press, Cambridge, MA, 1982. |
[28] |
H. A. Simon, "Models of Bounded Rationality: Empirically Grounded Economic Reason," Vol. 3, MIT Press, Cambridge, MA, 1997. |
[29] |
N. N. Taleb, "The Black Swan: The Impact of the Highly Improbable," Random House, New York City, 2007. |
[30] |
G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496. |
[31] |
F. Vega-Redondo, "Complex Social Networks," Econometric Society Monographs, 44, Cambridge University Press, Cambridge, 2007. |
[32] |
G. F. Webb, "Theory of Nonlinear Age-dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985. |