\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Large time behavior of the solution to the Landau Equation with specular reflective boundary condition

Abstract Related Papers Cited by
  • In this paper a half space problem for the one-dimensional Landau equation with specular reflective boundary condition is investigated. We show that the solution to the Landau equation converges to a global Maxwellian. Moreover, a time-decay rate is also obtained.
    Mathematics Subject Classification: Primary: 35A01, 82C40; Secondary: 35A09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Alexandre, Y. Morimoto, S. Ukai, C.-J Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661.doi: 10.1007/s00205-011-0432-0.

    [2]

    S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases," Cambridge, 1952.

    [3]

    P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Ration. Mech. Anal., 138 (1997), 137-167.doi: 10.1007/s002050050038.

    [4]

    L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I, II, Comm. P.D.E., 25 (2000), 179-298.doi: 10.1080/03605300008821512.

    [5]

    R.-J. Duan, T. Yang and H.-J. Zhao, Global solutions to the Vlasov-Poisson-Landau system, preprint, 2012.

    [6]

    Y. Guo, The Landau equation in periodic box, Comm. Math. Phys., 231 (2002), 391-434.doi: 10.1007/s00220-002-0729-9.

    [7]

    Y. Guo, Classical solutions to the Boltzmann equation for molecules with angular cutoff, Arch. Rat. Mech. Anal., 169 (2003), 305-353.doi: 10.1007/s00205-003-0262-9.

    [8]

    Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Rat. Mech. Anal., 197 (2010), 713-809.doi: 10.1007/s00205-009-0285-y.

    [9]

    Y. Guo, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812.doi: 10.1090/S0894-0347-2011-00722-4.

    [10]

    L. Hsiao and H. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math., 65 (2007), 281-315.

    [11]

    F. Huang, Z. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297.doi: 10.1016/j.aim.2008.06.014.

    [12]

    F. Huang and Y. Wang, Large time behavior of the solutions to the Boltzmann equation with specular reflective boundary condition, J. Differential Equations, 240 (2007), 399-429.doi: 10.1016/j.jde.2007.05.032.

    [13]

    S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97-127.doi: 10.1007/BF01212358.

    [14]

    P.-L. Lions, On Boltzmann and Landau equations, Phil. Trans. R. Soc. Lond. Ser. A., 346 (1994), 191-204.doi: 10.1098/rsta.1994.0018.

    [15]

    T.-P. Liu, and Z. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws, Asian J. Math., 1 (1997), 34-84.

    [16]

    T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192.doi: 10.1016/j.physd.2003.07.011.

    [17]

    T.-P. Liu, T. Yang, S.-H. Yu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation, Arch. Ration. Mech. Anal., 181 (2)(2006), 333-371.doi: 10.1007/s00205-005-0414-1.

    [18]

    T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: 10.1007/s00220-003-1030-2.

    [19]

    A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.doi: 10.1007/BF03167088.

    [20]

    A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144 (1992), 325-335.doi: 10.1007/BF02101095.

    [21]

    R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.doi: 10.1007/s00205-007-0067-3.

    [22]

    R. M. Strain and K. Y. Zhu, The Vlasov-Poisson-Landau system in $R^3$, preprint, 2012.

    [23]

    S. Ukai and T. Yang, "Mathematical Theory of Boltzmann Equation," Lecture Notes Series, No. 8, Liu Bie Ju Centre for Math. Sci., City University of Hong Kong, 2006.

    [24]

    C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics," Vol. I, North-Holland, Amsterdam, (2002), 71-305.doi: 10.1016/S1874-5792(02)80004-0.

    [25]

    C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Diff. Eq., 1 (1996), 793-816.

    [26]

    Y.-J. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $R^3$, SIAM Math. Anal., 44 (2012), 3281-3323.doi: 10.1137/120879129.

    [27]

    Y. Wang and Z. Jiang, The specular reflective boundary problem for the Boltzmann equation with soft potentials, Nonlinear Analysis, 75 (2012), 786-805.doi: 10.1016/j.na.2011.09.011.

    [28]

    Z. Xin, T. Yang and H. Yu, The Boltzmann equation with soft potentials near the local Maxwellian, Arch. Ration. Mech. Anal., 206 (2012), 239-296.doi: 10.1007/s00205-012-0535-2.

    [29]

    Z. Xin, T. Yang and H. Yu, Nonlinear stability of rarefaction waves for the Landau equation, preprint, 2010.

    [30]

    T. Yang and H.-J. Zhao, A half-space problem for the Boltzmann equation with specular reflection boundary condition, Comm. Math. Phys., 255 (2005), 683-726.doi: 10.1007/s00220-004-1278-1.

    [31]

    T. Yang and H.-J. Zhao, A new energy method for the Boltzmann equation, J. Math. Phys., 47 (2006), 053301, 19 pp.doi: 10.1063/1.2195528.

    [32]

    H. Yu, Cauchy problem of the Vlasov-Poisson-Landau system, preprint, 2012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return