• Previous Article
    One-dimensional compressible Navier-Stokes equations with large density oscillation
  • KRM Home
  • This Issue
  • Next Article
    Large time behavior of the solution to the Landau Equation with specular reflective boundary condition
September  2013, 6(3): 625-648. doi: 10.3934/krm.2013.6.625

Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators

1. 

Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris VI), 4 Place Jussieu, 75252 Paris cedex 05, France

2. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

3. 

Université de Cergy-Pontoise, CNRS UMR 8088, Mathématiques, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France

4. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray

Received  November 2012 Revised  February 2013 Published  May 2013

We prove that the linearized non-cutoff Boltzmann operator with Maxwellian molecules is exactly equal to a fractional power of the linearized Landau operator which is the sum of the harmonic oscillator and the spherical Laplacian. This result allows to display explicit sharp coercive estimates satisfied by the linearized non-cutoff Boltzmann operator for both Maxwellian and non-Maxwellian molecules.
Citation: Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic and Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625
References:
[1]

R. Alexandre, A review of Boltzmann equation with singular kernels, Kinet. Relat. Models, 2 (2009), 551-646. doi: 10.3934/krm.2009.2.551.

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355. doi: 10.1007/s002050000083.

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123. doi: 10.1007/s00205-010-0290-1.

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581. doi: 10.1007/s00220-011-1242-9.

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010. doi: 10.1016/j.jfa.2011.10.007.

[6]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.

[7]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.

[8]

A. V. Bobylëv, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in "Mathematical Physics Reviews," Vol. 7, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Academic Publ., Chur, (1988), 111-233.

[9]

C. Cohen-Tannoudji, B. Diu and F. Laloë, "Mécanique Quantique I," Hermann, Éditeurs des Sciences et des Arts, 1992.

[10]

C. Cohen-Tannoudji, B. Diu and F. Laloë, "Mécanique Quantique II," Hermann, Éditeurs des Sciences et des Arts, 1992.

[11]

C. Cercignani, "Mathematical Methods in Kinetic Theory," Plenum Press, New York, 1969.

[12]

C. Cercignani, "The Boltzmann Equation and its Applications," Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[13]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182. doi: 10.1142/S0218202592000119.

[14]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276. doi: 10.1080/00411459208203923.

[15]

L. Desvillettes, About the regularization properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. doi: 10.1007/BF02101556.

[16]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital. (9), 4 (2011), 47-68.

[17]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847. doi: 10.1090/S0894-0347-2011-00697-8.

[18]

P.-T. Gressman and R.-M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. in Math., 227 (2011), 2349-2384. doi: 10.1016/j.aim.2011.05.005.

[19]

L. D. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys. Z. Sowjet. 10 (1936), 154; translation in "The Transport Equation in the Case of Coulomb Interactions" (ed. D. ter Haar), Collected papers of L. D. Landau, Pergamon Press, Oxford, (1981), 163-170.

[20]

N. N. Lebedev, "Special Functions and their Applications," Revised edition, translated from the Russian and edited by Richard A. Silverman, Dover Publications, Inc., New York, 1972.

[21]

N. Lerner, Y. Morimoto and K. Pravda-Starov, Hypoelliptic estimates for a linear model of the Boltzmann equation without angular cutoff, Comm. Part. Diff. Equat., 37 (2012), 234-284. doi: 10.1080/03605302.2011.625462.

[22]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Spectral and phase space analysis of the linearized non-cutoff Kac collision operator, to appear in J. Math. Pures Appl., (2013). doi: 10.1016/j.matpur.2013.03.005.

[23]

Y. Morimoto and C.-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ., 47 (2007), 129-152.

[24]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Diff. Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.

[25]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Part. Diff. Equat., 31 (2006), 1321-1348. doi: 10.1080/03605300600635004.

[26]

C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87 (2007), 515-535. doi: 10.1016/j.matpur.2007.03.003.

[27]

Y. P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, Comm. Pure Appl. Math., 27 (1974), 407-428. doi: 10.1002/cpa.3160270402.

[28]

Y. P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. II, Comm. Pure Appl. Math., 27 (1974), 559-581. doi: 10.1002/cpa.3160270402.

[29]

G. Szegö, "Orthogonal Polynomials," Fourth edition, American Mathematical Society, Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975.

[30]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[31]

C. Villani, "Contribution à l'Étude Mathématique des Collisions en Théorie Cinétique," Habilitation dissertation, Université Paris-Dauphine, France, 2000.

[32]

C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics," Vol. I, North-Holland, Amsterdam, (2002), 71-305. doi: 10.1016/S1874-5792(02)80004-0.

[33]

C. S. Wang Chang and G. E. Uhlenbeck, "On the Propagation of Sound in Monoatomic Gases," Univ. of Michigan Press, Ann Arbor, Michigan; Reprinted in 1970 in "Studies in Statistical Mechanics," Vol. V (eds. J. L. Lebowitz and E. Montroll), North-Holland, 1970.

[34]

B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Part. Diff. Equat., 19 (1994), 2057-2074. doi: 10.1080/03605309408821082.

show all references

References:
[1]

R. Alexandre, A review of Boltzmann equation with singular kernels, Kinet. Relat. Models, 2 (2009), 551-646. doi: 10.3934/krm.2009.2.551.

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355. doi: 10.1007/s002050000083.

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123. doi: 10.1007/s00205-010-0290-1.

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581. doi: 10.1007/s00220-011-1242-9.

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010. doi: 10.1016/j.jfa.2011.10.007.

[6]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.

[7]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.

[8]

A. V. Bobylëv, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in "Mathematical Physics Reviews," Vol. 7, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Academic Publ., Chur, (1988), 111-233.

[9]

C. Cohen-Tannoudji, B. Diu and F. Laloë, "Mécanique Quantique I," Hermann, Éditeurs des Sciences et des Arts, 1992.

[10]

C. Cohen-Tannoudji, B. Diu and F. Laloë, "Mécanique Quantique II," Hermann, Éditeurs des Sciences et des Arts, 1992.

[11]

C. Cercignani, "Mathematical Methods in Kinetic Theory," Plenum Press, New York, 1969.

[12]

C. Cercignani, "The Boltzmann Equation and its Applications," Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[13]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182. doi: 10.1142/S0218202592000119.

[14]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276. doi: 10.1080/00411459208203923.

[15]

L. Desvillettes, About the regularization properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. doi: 10.1007/BF02101556.

[16]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital. (9), 4 (2011), 47-68.

[17]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847. doi: 10.1090/S0894-0347-2011-00697-8.

[18]

P.-T. Gressman and R.-M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. in Math., 227 (2011), 2349-2384. doi: 10.1016/j.aim.2011.05.005.

[19]

L. D. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys. Z. Sowjet. 10 (1936), 154; translation in "The Transport Equation in the Case of Coulomb Interactions" (ed. D. ter Haar), Collected papers of L. D. Landau, Pergamon Press, Oxford, (1981), 163-170.

[20]

N. N. Lebedev, "Special Functions and their Applications," Revised edition, translated from the Russian and edited by Richard A. Silverman, Dover Publications, Inc., New York, 1972.

[21]

N. Lerner, Y. Morimoto and K. Pravda-Starov, Hypoelliptic estimates for a linear model of the Boltzmann equation without angular cutoff, Comm. Part. Diff. Equat., 37 (2012), 234-284. doi: 10.1080/03605302.2011.625462.

[22]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Spectral and phase space analysis of the linearized non-cutoff Kac collision operator, to appear in J. Math. Pures Appl., (2013). doi: 10.1016/j.matpur.2013.03.005.

[23]

Y. Morimoto and C.-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ., 47 (2007), 129-152.

[24]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Diff. Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.

[25]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Part. Diff. Equat., 31 (2006), 1321-1348. doi: 10.1080/03605300600635004.

[26]

C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87 (2007), 515-535. doi: 10.1016/j.matpur.2007.03.003.

[27]

Y. P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, Comm. Pure Appl. Math., 27 (1974), 407-428. doi: 10.1002/cpa.3160270402.

[28]

Y. P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. II, Comm. Pure Appl. Math., 27 (1974), 559-581. doi: 10.1002/cpa.3160270402.

[29]

G. Szegö, "Orthogonal Polynomials," Fourth edition, American Mathematical Society, Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975.

[30]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[31]

C. Villani, "Contribution à l'Étude Mathématique des Collisions en Théorie Cinétique," Habilitation dissertation, Université Paris-Dauphine, France, 2000.

[32]

C. Villani, A review of mathematical topics in collisional kinetic theory, in "Handbook of Mathematical Fluid Dynamics," Vol. I, North-Holland, Amsterdam, (2002), 71-305. doi: 10.1016/S1874-5792(02)80004-0.

[33]

C. S. Wang Chang and G. E. Uhlenbeck, "On the Propagation of Sound in Monoatomic Gases," Univ. of Michigan Press, Ann Arbor, Michigan; Reprinted in 1970 in "Studies in Statistical Mechanics," Vol. V (eds. J. L. Lebowitz and E. Montroll), North-Holland, 1970.

[34]

B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Part. Diff. Equat., 19 (1994), 2057-2074. doi: 10.1080/03605309408821082.

[1]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[2]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[3]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026

[4]

Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057

[5]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056

[6]

Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112

[7]

Pierre Gervais. A spectral study of the linearized Boltzmann operator in $ L^2 $-spaces with polynomial and Gaussian weights. Kinetic and Related Models, 2021, 14 (4) : 725-747. doi: 10.3934/krm.2021022

[8]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic and Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[9]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[10]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

[11]

Yulong Li, Aleksey S. Telyakovskiy, Emine Çelik. Analysis of one-sided 1-D fractional diffusion operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1673-1690. doi: 10.3934/cpaa.2022039

[12]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[13]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure and Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[14]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[15]

Lilun Zhang, Le Li, Chuangxia Huang. Positive stability analysis of pseudo almost periodic solutions for HDCNNs accompanying $ D $ operator. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1651-1667. doi: 10.3934/dcdss.2021160

[16]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[17]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic and Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[18]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic and Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[19]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems and Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[20]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic and Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (14)

[Back to Top]