Citation: |
[1] |
S. Berres, R. Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.doi: 10.1137/S0036139902408163. |
[2] |
C. Baranger, G. Baudin, L. Boudin, B. Després, F. Lagoutière, E. Lapébie and T. Takahashi, Liquid jet generation and break-up, in Numerical Methods for Hyperbolic and Kinetic Equations, S. Cordier, Th. Goudon, M. Gutnic, E. Sonnendrucker Eds., IRMA Lectures in Mathematics and Theoretical Physics (EMS Publ. House) 7 (2005), 149-176.doi: 10.4171/012-1/8. |
[3] |
C. Baranger, L. Boudin, P.-E Jabin and S. Mancini, A modeling of biospray for the upper airways, CEMRACS 2004-mathematics and applications to biology and medicine, ESAIM Proc., 14 (2005), 41-47. |
[4] |
C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3 (2006), 1-26.doi: 10.1142/S0219891606000707. |
[5] |
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differential and Integal Equations, 22 (2009), 1247-1271. |
[6] |
R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983), 885-906.doi: 10.1137/0143057. |
[7] |
J. A. Carrillo, R.-J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Euler-Fokker-Planck system, Kinetic and Related Models, 4 (2011), 227-258.doi: 10.3934/krm.2011.4.227. |
[8] |
J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Comm. Partial Differential Equations, 31 (2006), 1349-1379.doi: 10.1080/03605300500394389. |
[9] |
M. Chae, K. Kang and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations, Journal of Differential Equations, 251 (2011), 2431-2465.doi: 10.1016/j.jde.2011.07.016. |
[10] |
K. Domelevo, Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 591-607.doi: 10.3934/dcdsb.2002.2.591. |
[11] |
K. Domelevo and J. M. Roquejoffre, Existence and stability of travelling wave solutions in a kinetic model of two-phase flows, Comm. PDE, 24 (1999), 61-108.doi: 10.1080/03605309908821418. |
[12] |
R.-J. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusions, Comm. Math. Phys., 300 (2010), 95-145.doi: 10.1007/s00220-010-1110-z. |
[13] |
T. Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1371-1384.doi: 10.1017/S030821050000144X. |
[14] |
T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202.doi: 10.1137/090776755. |
[15] |
T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.doi: 10.1512/iumj.2004.53.2508. |
[16] |
T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.doi: 10.1512/iumj.2004.53.2509. |
[17] |
T. Goudon, S. Jin and B. Yan, Simulation of fluid-particles flows: Heavy particles, flowing regime, and asymptotic-preserving schemes, Commun. Math. Sci., 10 (2012), 355-385.doi: 10.4310/CMS.2012.v10.n1.a15. |
[18] |
T. Goudon, M. Sy and L. Tiné, A fluid-kinetic model for particulate flows with coagulation and breakup: Stationary solutions, stability, and hydrodynamic regimes, SIAM Journal on Applied Mathematics, 73 (2013), 401-421.doi: 10.1137/120861515. |
[19] |
Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.doi: 10.1512/iumj.2004.53.2574. |
[20] |
K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.doi: 10.1007/BF03167396. |
[21] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Thesis, Kyoto University, 1983. |
[22] |
A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.doi: 10.1007/s00220-008-0523-4. |
[23] |
A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.doi: 10.1142/S0218202507002194. |
[24] |
A. Moussa and F. Sueur, On a Vlasov-Euler system for 2D sprays with gyroscopic effects, Asymptotic Analysis, 81 (2013), 53-91.doi: 10.3233/ASY-2012-1123. |
[25] |