December  2013, 6(4): 715-727. doi: 10.3934/krm.2013.6.715

A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation

1. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

2. 

Université de Cergy-Pontoise, CNRS UMR 8088, Mathématiques, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise

3. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray

Received  February 2013 Revised  June 2013 Published  November 2013

We consider the non-linear spatially homogeneous Landau equation with Maxwellian molecules in a close-to-equilibrium framework and show that the Cauchy problem for the fluctuation around the Maxwellian equilibrium distribution enjoys a Gelfand-Shilov regularizing effect in the class $S_{1/2}^{1/2}(\mathbb{R}^d)$, implying the ultra-analyticity and the production of exponential moments of the fluctuation, for any positive time.
Citation: Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinetic and Related Models, 2013, 6 (4) : 715-727. doi: 10.3934/krm.2013.6.715
References:
[1]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.

[2]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.

[3]

H. Chen, W.-X. Li and C.-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 673-686. doi: 10.1016/S0252-9602(09)60063-1.

[4]

H. Chen, W.-X. Li and C.-J. Xu, Analytic smoothness effect of solutions for spatially homogeneous Landau equation, J. Differential Equations, 248 (2010), 77-94. doi: 10.1016/j.jde.2009.08.006.

[5]

C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[6]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182. doi: 10.1142/S0218202592000119.

[7]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276. doi: 10.1080/00411459208203923.

[8]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512.

[9]

I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2. Spaces of fundamental and generalized functions. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968 [1977].

[10]

T. Gramchev, S. Pilipović and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces, in New Developments in Pseudo-Differential Operators, Oper. Theory Adv. Appl. Birkhäuser, Basel, 189 (2009), 15-31. doi: 10.1007/978-3-7643-8969-7_2.

[11]

L. D. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys. Z. Sowjet., 10 (1936) 154. Translation: The transport equation in the case of Coulomb interactions, D. ter Haar (Ed.), Collected papers of L. D. Landau, Pergamon Press, Oxford (1981), 163-170.

[12]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648. doi: 10.3934/krm.2013.6.625.

[13]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831. doi: 10.1016/j.jde.2013.10.001.

[14]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.

[15]

F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo-Differential Operators, Theory and Applications, 4, Birkhäuser Verlag, Basel, 2010. doi: 10.1007/978-3-7643-8512-5.

[16]

J. Toft, A. Khrennikov, B. Nilsson and S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels of similar class, J. Math. Anal. Appl., 396 (2012), 315-322. doi: 10.1016/j.jmaa.2012.06.025.

[17]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983. doi: 10.1142/S0218202598000433.

[18]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

show all references

References:
[1]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. doi: 10.1016/S0294-1449(03)00030-1.

[2]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik, 69 (1991), 465-478.

[3]

H. Chen, W.-X. Li and C.-J. Xu, Gevrey regularity for solution of the spatially homogeneous Landau equation, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 673-686. doi: 10.1016/S0252-9602(09)60063-1.

[4]

H. Chen, W.-X. Li and C.-J. Xu, Analytic smoothness effect of solutions for spatially homogeneous Landau equation, J. Differential Equations, 248 (2010), 77-94. doi: 10.1016/j.jde.2009.08.006.

[5]

C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[6]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182. doi: 10.1142/S0218202592000119.

[7]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276. doi: 10.1080/00411459208203923.

[8]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. doi: 10.1080/03605300008821512.

[9]

I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2. Spaces of fundamental and generalized functions. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968 [1977].

[10]

T. Gramchev, S. Pilipović and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces, in New Developments in Pseudo-Differential Operators, Oper. Theory Adv. Appl. Birkhäuser, Basel, 189 (2009), 15-31. doi: 10.1007/978-3-7643-8969-7_2.

[11]

L. D. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung, Phys. Z. Sowjet., 10 (1936) 154. Translation: The transport equation in the case of Coulomb interactions, D. ter Haar (Ed.), Collected papers of L. D. Landau, Pergamon Press, Oxford (1981), 163-170.

[12]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648. doi: 10.3934/krm.2013.6.625.

[13]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831. doi: 10.1016/j.jde.2013.10.001.

[14]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617. doi: 10.1016/j.jde.2009.01.028.

[15]

F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo-Differential Operators, Theory and Applications, 4, Birkhäuser Verlag, Basel, 2010. doi: 10.1007/978-3-7643-8512-5.

[16]

J. Toft, A. Khrennikov, B. Nilsson and S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels of similar class, J. Math. Anal. Appl., 396 (2012), 315-322. doi: 10.1016/j.jmaa.2012.06.025.

[17]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983. doi: 10.1142/S0218202598000433.

[18]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[1]

Wei-Xi Li, Lvqiao Liu. Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Kinetic and Related Models, 2020, 13 (5) : 1029-1046. doi: 10.3934/krm.2020036

[2]

Yoshinori Morimoto, Chao-Jiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic and Related Models, 2020, 13 (5) : 951-978. doi: 10.3934/krm.2020033

[3]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[4]

Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022010

[5]

Lassaad Aloui, Imen El Khal El Taief. The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds. Mathematical Control and Related Fields, 2020, 10 (4) : 699-714. doi: 10.3934/mcrf.2020016

[6]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[7]

Alain Haraux, Mitsuharu Ôtani. Analyticity and regularity for a class of second order evolution equations. Evolution Equations and Control Theory, 2013, 2 (1) : 101-117. doi: 10.3934/eect.2013.2.101

[8]

Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072

[9]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic and Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[10]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

[11]

Runzhang Xu, Yanbing Yang. Low regularity of solutions to the Rotation-Camassa-Holm type equation with the Coriolis effect. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6507-6527. doi: 10.3934/dcds.2020288

[12]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[13]

Hua Chen, Wei-Xi Li, Chao-Jiang Xu. Propagation of Gevrey regularity for solutions of Landau equations. Kinetic and Related Models, 2008, 1 (3) : 355-368. doi: 10.3934/krm.2008.1.355

[14]

D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527

[15]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[16]

Tsukasa Iwabuchi. On analyticity up to the boundary for critical quasi-geostrophic equation in the half space. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1209-1224. doi: 10.3934/cpaa.2022016

[17]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[18]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[19]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[20]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (8)

[Back to Top]