Citation: |
[1] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.doi: 10.1007/s002050000083. |
[2] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto J. Math., 52 (2012), 433-463.doi: 10.1215/21562261-1625154. |
[3] |
P. Biler, G. Karch and W. A. Woyczynski, Asymptotics for multifractal conservation laws, Studia Math., 135 (1999), 231-252. |
[4] |
R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.doi: 10.1090/S0002-9947-1960-0119247-6. |
[5] |
A. V. Bobylev, The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044. |
[6] |
A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Mathematical physics reviews, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Academic Publ., Chur, 7 (1988), 111-233. |
[7] |
A. V. Bobylev and C. Cercignani, Exact eternal solutions of the Boltzmann equation, J. Statist. Phys., 106 (2002), 1019-1038.doi: 10.1023/A:1014085719973. |
[8] |
A. V. Bobylev and C. Cercignani, Self-similar solutions of the Boltzmann equation and their applications, J. Statist. Phys., 106 (2002), 1039-1071.doi: 10.1023/A:1014037804043. |
[9] |
M. Cannone and G. Karch, Infinite energy solutions to the homogeneous Boltzmann equation, Comm. Pure Appl. Math., 63 (2010), 747-778.doi: 10.1002/cpa.20298. |
[10] |
Z. Huo, Y. Morimoto, S. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. Relat. Models, 1 (2008), 453-489.doi: 10.3934/krm.2008.1.453. |
[11] |
N. Jacob, Pseudo-differential Operators and Markov Processes. Vol. I, Fourier analysis and semigroups. Imperial College Press, London, 2001.doi: 10.1142/9781860949746. |
[12] |
Y. Morimoto, A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules, Kinet. Relat. Models, 5 (2012), 551-561.doi: 10.3934/krm.2012.5.551. |
[13] |
Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl., 1 (2010), 139-159.doi: 10.1007/s11868-010-0008-z. |
[14] |
Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., 24 (2009), 187-212.doi: 10.3934/dcds.2009.24.187. |
[15] |
Y. Morimoto and T. Yang, Villani conjecture on smoothing effect of the homogeneous Boltzmann equation with measure initial datum, arXiv:1210.0296 . |
[16] |
G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys., 94 (1999), 619-637.doi: 10.1023/A:1004589506756. |
[17] |
C. Villani, A review of mathematical topics in collisional kinetic theory, In Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, I (2002), 71-305.doi: 10.1016/S1874-5792(02)80004-0. |