Advanced Search
Article Contents
Article Contents

The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits

Abstract Related Papers Cited by
  • This contribution concerns a one-dimensional version of the Vlasov equation dubbed the Vlasov$-$Dirac$-$Benney equation (in short V$-$D$-$B) where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full nonlinear problem and equations of fluids. In particular the connection with the so-called Benney equation leads to new stability results. Eventually the V$-$D$-$B appears to be at the ``cross road" of several problems of mathematical physics which have as far as stability is concerned very similar properties.
    Mathematics Subject Classification: Primary: 3Q83, 75X05; Secondary: 82D10.


    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, An a priori estimate in the theory of hydrodynamical stability, Izv. Vyss. Ucebn. Zaved. Matematika, 54 (1966), 3-5.


    C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53 (2012), 115621-115637.doi: 10.1063/1.4765338.


    D. J. Benney, Instabilities associated with forced nonlinear waves, Stud. Appl. Math., 60 (1979), 27-41.


    N. Besse, On the waterbag continuum, Arch. Rat. Mech. Anal., 199 (2011), 453-491.doi: 10.1007/s00205-010-0392-9.


    N. Besse, F. Berthelin, Y. Brenier and P. Bertrand, The multi-water-bag equations for collision less kinetic modelization, Kin. Relat. Models, 2 (2009), 39-80.doi: 10.3934/krm.2009.2.39.


    Y. Brenier, Une Formulation De Type Vlasov-Poisson Pour Les Équations D'Euler Des Fluides Parfaits, Incompressibles, Inria report No 1070 INRIA-Rocquencourt 1989.


    Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529.


    Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.doi: 10.1088/0951-7715/12/3/004.


    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011.


    J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French) J. Funct. Anal., 7 (1971), 386-446.doi: 10.1016/0022-1236(71)90027-9.


    C. Q. Chen and P. G. Lefloch, Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal., 153 (2000), 221-259.doi: 10.1007/s002050000091.


    C. Q. Chen and P. G. Lefloch, Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal., 166 (2003), 81-98.doi: 10.1007/s00205-002-0229-2.


    M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390.doi: 10.1090/S0002-9939-1980-0553381-X.


    C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2000.doi: 10.1007/3-540-29089-3_14.


    K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, 2000.


    M. R. Feix, F. Hohl and L. D. Staton, Nonlinear effects in plasmas, (eds. Kalman and Feix), Gordon and Breach (1969), 3-21.


    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3: Theory of differential equations. Translated from the Russian by Meinhard E. Mayer Academic Press, New York-London 1967 x+222 pp.


    P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Equations aux Dérivées Partielles, 1992-1993, Exp. No. XIII, 13 pp., Ecole Polytech., Palaiseau, 1993.


    P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379.doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.


    E. Grenier, Limite semi-classique de l'équation de Schrödinger non linéaire en temps petit, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 691-694.


    E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126 (1998), 523-530.doi: 10.1090/S0002-9939-98-04164-1.


    E. Grenier, Limite Quasineutre En Dimension 1, Journées Equations aux Dérivées Partielles, (Saint-Jean-de-Monts, 1999), Exp. No II, 8 pp., Univ. Nantes, Nantes, 1999.


    Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J., 60 (2011), 677-711.doi: 10.1512/iumj.2011.60.4193.


    D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations, 36 (2011), 1385-1425.doi: 10.1080/03605302.2011.555804.


    P. E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov, C. R. Math. Acad. Sci. Paris, 349 (2011), 541-546.doi: 10.1016/j.crma.2011.03.024.


    S. Jin, C. D. Levermore and D. W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math., 52 (1999), 613-654.doi: 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L.


    T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966 xix+592 pp.


    N. Krall and A. Trivelpiece, Principles of Plasma Physics, International Series in Pure and Apllied Physics MacGraw-Hill Book Company, 1973.


    J.-L. Lions, Les semi groupes distributions, (French) Port. Math., 19 (1960), 141-164.


    P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618.doi: 10.4171/RMI/143.


    G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.doi: 10.1016/j.matpur.2006.01.005.


    A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, Vol 53 Springer-Verlag, 1984.doi: 10.1007/978-1-4612-1116-7.


    S. G Mikhlin and S. Prössdorf, Singular Integral Operators, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Springer-Verlag, Berlin, 1986.doi: 10.1007/978-3-642-61631-0.


    R. C. Paley and N. Wiener, Fourier Transforms in the Complex Plane, AMS Vol 19, 1934.


    J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996.


    O. Penrose, Electronic instabilities of a non uniform plasma, Phys. of Fluids, 3 (1960), 258-265.


    M. Riesz, Sur les fonctions conjuguées, Math. Zeit., 27 (1928), 218-244.doi: 10.1007/BF01171098.


    E. M. Stein, Harmonic Analysis, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993.


    V. M. Teshukov, On hyperbolicity of long-wave equations, Soviet Math. Dokl., 32 (1985), 469-473.


    V. M. Teshukov, On Cauchy problem for long-wave equations, In Numerical Methods for Free Boundary Problems, Birkhäuser, Boston, 106 (1992), 331-338.


    V. M. Teshukov, Long waves in an eddying barotropic liquid, J. Appl. Mech. Tech. Phys., 35 (1994), 823-831.doi: 10.1007/BF02369574.


    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, Clarendon press, 1948.


    K. Yosida, Functional Analysis, Springer-Verlag, 1968.


    V. E. Zakharov, Benney equations and quasiclassical approximation in the inverse problem method, (Russian) Funktsional. Anal. i Prilozhen, 14 (1980), 15-24.

  • 加载中

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint