December  2013, 6(4): 945-954. doi: 10.3934/krm.2013.6.945

Convex analysis and thermodynamics

1. 

Université Paris-Est/Laboratoire Navier, Ecole des Ponts ParisTech, 6 et 8 av. Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée, Cedex 2, France

2. 

Direction Technique et Scientifique, EGIS Industries, 4, rue Dolores Ibarruri, 93188 Montreuil Cedex

Received  August 2013 Revised  September 2013 Published  November 2013

Convex analysis is very useful to prove that a material model fulfills the second law of thermodynamics. Dissipation must remains non-negative and an elegant way to ensure this property is to construct an appropriate pseudo-potential of dissipation. In such a case, the corresponding material is said to be a Standard Generalized Material and the flow rules fulfill a normality rule (i.e. the dissipative thermodynamic forces are assumed to belong to an admissible domain and the flow of the corresponding state variables is orthogonal to the boundary of this domain). The sum of the pseudo-potential with its Legendre-Fenchel conjugate fulfills the Fenchel's inequality and as the actual value of the dual pair forces-flows minimizes this inequality, this can be used as a convergence criterium for numerical applications. Actually, some very commonly used and effective models do not fit into that family of Standard Generalized Materials. A procedure is here proposed which permits to retrieve the normality assumption and to construct a pair of dual pseudo-potentials also for these non-standard material models. This procedure was first presented by the authors for non-associated plasticity. Now it is extended to a large range of mechanical problems.
Citation: Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic and Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945
References:
[1]

J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Série II, 271 (1970), 608-611 (in French).

[2]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 14 (1975), 39-63 (in French).

[3]

S. Erlicher and N. Point, On the Associativity of the Drucker -Prager Model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, 2005.

[4]

S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: A new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200. doi: 10.1016/j.ijsolstr.2005.03.022.

[5]

N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842.

[6]

N. Point and S. Erlicher, Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact, Discret and Continuous Dynamical Systems - Series S, 6 (2013), 567-590.

[7]

G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de Académie des Sciences, Série II, 314 (1992), 125-129.

[8]

J. F. Babadjian, G. Francfort and M. G. Mora, Quasistatic evolution in non-associative plasticity: The cap model, SIAM J. Math. Anal, 44 (2012), 245-292. doi: 10.1137/110823511.

[9]

R. T. Rockafellar, Convex Analysis, Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ, 1997.

[10]

H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-237. doi: 10.1016/S0065-2156(08)70278-3.

[11]

M. Jirásek and Z. P. Bazant, Inelastic Analysis of Structures, Wyley, Chichester, 2002.

[12]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002.

[13]

J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.

show all references

References:
[1]

J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Série II, 271 (1970), 608-611 (in French).

[2]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 14 (1975), 39-63 (in French).

[3]

S. Erlicher and N. Point, On the Associativity of the Drucker -Prager Model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, 2005.

[4]

S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: A new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200. doi: 10.1016/j.ijsolstr.2005.03.022.

[5]

N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842.

[6]

N. Point and S. Erlicher, Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact, Discret and Continuous Dynamical Systems - Series S, 6 (2013), 567-590.

[7]

G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de Académie des Sciences, Série II, 314 (1992), 125-129.

[8]

J. F. Babadjian, G. Francfort and M. G. Mora, Quasistatic evolution in non-associative plasticity: The cap model, SIAM J. Math. Anal, 44 (2012), 245-292. doi: 10.1137/110823511.

[9]

R. T. Rockafellar, Convex Analysis, Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ, 1997.

[10]

H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-237. doi: 10.1016/S0065-2156(08)70278-3.

[11]

M. Jirásek and Z. P. Bazant, Inelastic Analysis of Structures, Wyley, Chichester, 2002.

[12]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002.

[13]

J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.

[1]

Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567

[2]

Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641

[3]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[4]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[5]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[6]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[7]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[8]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[9]

Yigui Ou, Xin Zhou. A modified scaled memoryless BFGS preconditioned conjugate gradient algorithm for nonsmooth convex optimization. Journal of Industrial and Management Optimization, 2018, 14 (2) : 785-801. doi: 10.3934/jimo.2017075

[10]

Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 569-582. doi: 10.3934/naco.2021022

[11]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[12]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651

[13]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[14]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure and Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[15]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[16]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[17]

Primitivo Acosta-Humánez, David Blázquez-Sanz. Non-integrability of some hamiltonians with rational potentials. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 265-293. doi: 10.3934/dcdsb.2008.10.265

[18]

Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163

[19]

Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic and Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769

[20]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]