-
Previous Article
Some properties of the kinetic equation for electron transport in semiconductors
- KRM Home
- This Issue
-
Next Article
Empirical measures and Vlasov hierarchies
Convex analysis and thermodynamics
1. | Université Paris-Est/Laboratoire Navier, Ecole des Ponts ParisTech, 6 et 8 av. Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée, Cedex 2, France |
2. | Direction Technique et Scientifique, EGIS Industries, 4, rue Dolores Ibarruri, 93188 Montreuil Cedex |
References:
[1] |
J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Série II, 271 (1970), 608-611 (in French). |
[2] |
B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 14 (1975), 39-63 (in French). |
[3] |
S. Erlicher and N. Point, On the Associativity of the Drucker -Prager Model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, 2005. |
[4] |
S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: A new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200.
doi: 10.1016/j.ijsolstr.2005.03.022. |
[5] |
N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842. |
[6] |
N. Point and S. Erlicher, Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact, Discret and Continuous Dynamical Systems - Series S, 6 (2013), 567-590. |
[7] |
G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de Académie des Sciences, Série II, 314 (1992), 125-129. |
[8] |
J. F. Babadjian, G. Francfort and M. G. Mora, Quasistatic evolution in non-associative plasticity: The cap model, SIAM J. Math. Anal, 44 (2012), 245-292.
doi: 10.1137/110823511. |
[9] |
R. T. Rockafellar, Convex Analysis, Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ, 1997. |
[10] |
H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-237.
doi: 10.1016/S0065-2156(08)70278-3. |
[11] |
M. Jirásek and Z. P. Bazant, Inelastic Analysis of Structures, Wyley, Chichester, 2002. |
[12] |
M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. |
[13] |
J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990. |
show all references
References:
[1] |
J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Série II, 271 (1970), 608-611 (in French). |
[2] |
B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 14 (1975), 39-63 (in French). |
[3] |
S. Erlicher and N. Point, On the Associativity of the Drucker -Prager Model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, 2005. |
[4] |
S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: A new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200.
doi: 10.1016/j.ijsolstr.2005.03.022. |
[5] |
N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842. |
[6] |
N. Point and S. Erlicher, Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact, Discret and Continuous Dynamical Systems - Series S, 6 (2013), 567-590. |
[7] |
G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de Académie des Sciences, Série II, 314 (1992), 125-129. |
[8] |
J. F. Babadjian, G. Francfort and M. G. Mora, Quasistatic evolution in non-associative plasticity: The cap model, SIAM J. Math. Anal, 44 (2012), 245-292.
doi: 10.1137/110823511. |
[9] |
R. T. Rockafellar, Convex Analysis, Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ, 1997. |
[10] |
H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-237.
doi: 10.1016/S0065-2156(08)70278-3. |
[11] |
M. Jirásek and Z. P. Bazant, Inelastic Analysis of Structures, Wyley, Chichester, 2002. |
[12] |
M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. |
[13] |
J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990. |
[1] |
Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567 |
[2] |
Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641 |
[3] |
Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9 |
[4] |
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415 |
[5] |
Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447 |
[6] |
Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206 |
[7] |
Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 |
[8] |
Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011 |
[9] |
Yigui Ou, Xin Zhou. A modified scaled memoryless BFGS preconditioned conjugate gradient algorithm for nonsmooth convex optimization. Journal of Industrial and Management Optimization, 2018, 14 (2) : 785-801. doi: 10.3934/jimo.2017075 |
[10] |
Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 569-582. doi: 10.3934/naco.2021022 |
[11] |
Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317 |
[12] |
Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3 (3) : 651-673. doi: 10.3934/nhm.2008.3.651 |
[13] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[14] |
Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure and Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627 |
[15] |
JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042 |
[16] |
Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165 |
[17] |
Primitivo Acosta-Humánez, David Blázquez-Sanz. Non-integrability of some hamiltonians with rational potentials. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 265-293. doi: 10.3934/dcdsb.2008.10.265 |
[18] |
Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163 |
[19] |
Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic and Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769 |
[20] |
Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]