-
Previous Article
Remarks on the full dispersion Kadomtsev-Petviashvli equation
- KRM Home
- This Issue
-
Next Article
Some properties of the kinetic equation for electron transport in semiconductors
Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension
1. | Muroran Institute of Technology, Muroran 050-8585, Japan |
2. | School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011 |
3. | Faculty of Mathematics, Kyushu University, Fukuoka 819-0395 |
References:
[1] |
G. Chen, Y. Wang and S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl., 299 (2004), 563-577.
doi: 10.1016/j.jmaa.2004.05.044. |
[2] |
M. Kato, Large time behavior of solutions to the generalized Burgers equations, Osaka J. Math., 44 (2007), 923-943. |
[3] |
S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106 (1987), 169-194.
doi: 10.1017/S0308210500018308. |
[4] |
S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation, Comm. Math. Phys., 109 (1987), 563-589.
doi: 10.1007/BF01208958. |
[5] |
S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and application to radiation hydrodynamics, Analysis of Systems of Conservation Laws,(Aachen, 1997), 87-127, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., 99, Chapman & Hall/CRC,, Boca Raton, FL, (1999). |
[6] |
S. Kawashima and Y.-Z. Wang, Global Existence and Asymptotic Behavior of Solutions to the Generalized Cubic Double Dispersion Equation, Analysis and Applications (accepted). |
[7] |
T. T. Li and Y. M. Chen, Nonlinear Evolution Equations, Academic Press, New York, 1989 (in Chinese). |
[8] |
T.-P. Liu, Hyperbolic and Viscous Conservation Laws, CBMS-NSF Regional Conference Sereies in Applied Math., vol. 72, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719420. |
[9] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws, Memoirs Amer. Math. Soc., 125 (1997), 120pp.
doi: 10.1090/memo/0599. |
[10] |
Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.
doi: 10.3934/dcds.2011.29.1113. |
[11] |
Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 8 (2011), 591-614.
doi: 10.1142/S0219891611002500. |
[12] |
Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinetic and Related Models, 4 (2011), 531-547.
doi: 10.3934/krm.2011.4.531. |
[13] |
A. Matsumura, On the asymptotic behaviour of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189.
doi: 10.2977/prims/1195190962. |
[14] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342.
doi: 10.1007/BF02572407. |
[15] |
K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their applications, Math. Z., 244 (2003), 631-649.
doi: 10.1007/s00209-003-0516-0. |
[16] |
N. Polat and A. Ertaş, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl., 349 (2009), 10-20.
doi: 10.1016/j.jmaa.2008.08.025. |
[17] |
A. M. Samsonov, Nonlinear strain waves in elastic waveguides, in Nonlinear Waves in Solids(Udine, 1993), CISM Courses and Lectures, Springer, Vienna, 341 (1994), 349-382. |
[18] |
A. M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic waveguides and external media, in Nonlinear Waves in Active Media, Springer, Berlin, Heidelberg, (1989), 99-104. |
[19] |
Y. Sugitani and S. Kawashima, Decay estimates of solution to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010), 471-501.
doi: 10.1142/S0219891610002207. |
[20] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect, J. Math. Anal. Appl., 401 (2013), 244-258.
doi: 10.1016/j.jmaa.2012.12.015. |
[21] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profles, J. Differential Equations, 253 (2012), 3061-3080.
doi: 10.1016/j.jde.2012.07.014. |
[22] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933. |
[23] |
Y. Ueda and S. Kawashima, Large time behavior of solutions to a semilinear hyperbolic system with relaxation, J. Hyperbolic Differential Equations, 4 (2007), 147-179.
doi: 10.1142/S0219891607001082. |
[24] |
S. Wang and G. Chen, Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 64 (2006), 159-173.
doi: 10.1016/j.na.2005.06.017. |
[25] |
S. Wang and F. Da, On the asymptotic behavior of solution for the generalized double dipersion equation, Appl. Anal., 92 (2013), 1179-1193.
doi: 10.1080/00036811.2012.661044. |
[26] |
S. Wang and H. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term, J. Diff. Equations, 252 (2012), 4243-4258.
doi: 10.1016/j.jde.2011.12.016. |
[27] |
Y.-Z. Wang, Global existence and asymptotic behaviour of solutions for the generalized Boussinesq equation, Nonlinear Anal., 70 (2009), 465-482.
doi: 10.1016/j.na.2007.12.018. |
[28] |
Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation, J. Math. Anal. Appl., 385 (2012), 836-853.
doi: 10.1016/j.jmaa.2011.07.010. |
[29] |
Y.-Z. Wang and Y.-X. Wang, Global existence and asymptotic behavior of solutions to a nonlinear wave equation of fourth-order, J. Math. Phys., 53 (2012), 013512, 13 pp.
doi: 10.1063/1.3677764. |
[30] |
R. Xu, Y. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal., 71 (2009), 4977-4983.
doi: 10.1016/j.na.2009.03.069. |
[31] |
S. M. Zheng, Nonlinear Evolution Equations, Monographs and Surveys in Pure and Applied Mathematics, vol. 133, Chapan & Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203492222. |
show all references
References:
[1] |
G. Chen, Y. Wang and S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl., 299 (2004), 563-577.
doi: 10.1016/j.jmaa.2004.05.044. |
[2] |
M. Kato, Large time behavior of solutions to the generalized Burgers equations, Osaka J. Math., 44 (2007), 923-943. |
[3] |
S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106 (1987), 169-194.
doi: 10.1017/S0308210500018308. |
[4] |
S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation, Comm. Math. Phys., 109 (1987), 563-589.
doi: 10.1007/BF01208958. |
[5] |
S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and application to radiation hydrodynamics, Analysis of Systems of Conservation Laws,(Aachen, 1997), 87-127, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., 99, Chapman & Hall/CRC,, Boca Raton, FL, (1999). |
[6] |
S. Kawashima and Y.-Z. Wang, Global Existence and Asymptotic Behavior of Solutions to the Generalized Cubic Double Dispersion Equation, Analysis and Applications (accepted). |
[7] |
T. T. Li and Y. M. Chen, Nonlinear Evolution Equations, Academic Press, New York, 1989 (in Chinese). |
[8] |
T.-P. Liu, Hyperbolic and Viscous Conservation Laws, CBMS-NSF Regional Conference Sereies in Applied Math., vol. 72, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719420. |
[9] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions to general quasilinear hyperbolic-parabolic systems of conservation laws, Memoirs Amer. Math. Soc., 125 (1997), 120pp.
doi: 10.1090/memo/0599. |
[10] |
Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.
doi: 10.3934/dcds.2011.29.1113. |
[11] |
Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 8 (2011), 591-614.
doi: 10.1142/S0219891611002500. |
[12] |
Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinetic and Related Models, 4 (2011), 531-547.
doi: 10.3934/krm.2011.4.531. |
[13] |
A. Matsumura, On the asymptotic behaviour of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189.
doi: 10.2977/prims/1195190962. |
[14] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342.
doi: 10.1007/BF02572407. |
[15] |
K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their applications, Math. Z., 244 (2003), 631-649.
doi: 10.1007/s00209-003-0516-0. |
[16] |
N. Polat and A. Ertaş, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl., 349 (2009), 10-20.
doi: 10.1016/j.jmaa.2008.08.025. |
[17] |
A. M. Samsonov, Nonlinear strain waves in elastic waveguides, in Nonlinear Waves in Solids(Udine, 1993), CISM Courses and Lectures, Springer, Vienna, 341 (1994), 349-382. |
[18] |
A. M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic waveguides and external media, in Nonlinear Waves in Active Media, Springer, Berlin, Heidelberg, (1989), 99-104. |
[19] |
Y. Sugitani and S. Kawashima, Decay estimates of solution to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010), 471-501.
doi: 10.1142/S0219891610002207. |
[20] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect, J. Math. Anal. Appl., 401 (2013), 244-258.
doi: 10.1016/j.jmaa.2012.12.015. |
[21] |
H. Takeda and S. Yoshikawa, On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profles, J. Differential Equations, 253 (2012), 3061-3080.
doi: 10.1016/j.jde.2012.07.014. |
[22] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933. |
[23] |
Y. Ueda and S. Kawashima, Large time behavior of solutions to a semilinear hyperbolic system with relaxation, J. Hyperbolic Differential Equations, 4 (2007), 147-179.
doi: 10.1142/S0219891607001082. |
[24] |
S. Wang and G. Chen, Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 64 (2006), 159-173.
doi: 10.1016/j.na.2005.06.017. |
[25] |
S. Wang and F. Da, On the asymptotic behavior of solution for the generalized double dipersion equation, Appl. Anal., 92 (2013), 1179-1193.
doi: 10.1080/00036811.2012.661044. |
[26] |
S. Wang and H. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term, J. Diff. Equations, 252 (2012), 4243-4258.
doi: 10.1016/j.jde.2011.12.016. |
[27] |
Y.-Z. Wang, Global existence and asymptotic behaviour of solutions for the generalized Boussinesq equation, Nonlinear Anal., 70 (2009), 465-482.
doi: 10.1016/j.na.2007.12.018. |
[28] |
Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation, J. Math. Anal. Appl., 385 (2012), 836-853.
doi: 10.1016/j.jmaa.2011.07.010. |
[29] |
Y.-Z. Wang and Y.-X. Wang, Global existence and asymptotic behavior of solutions to a nonlinear wave equation of fourth-order, J. Math. Phys., 53 (2012), 013512, 13 pp.
doi: 10.1063/1.3677764. |
[30] |
R. Xu, Y. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal., 71 (2009), 4977-4983.
doi: 10.1016/j.na.2009.03.069. |
[31] |
S. M. Zheng, Nonlinear Evolution Equations, Monographs and Surveys in Pure and Applied Mathematics, vol. 133, Chapan & Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203492222. |
[1] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[2] |
Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47 |
[3] |
Yu-Zhu Wang, Si Chen, Menglong Su. Asymptotic profile of solutions to the linearized double dispersion equation on the half space $\mathbb{R}^{n}_{+}$. Evolution Equations and Control Theory, 2017, 6 (4) : 629-645. doi: 10.3934/eect.2017032 |
[4] |
Zengji Du, Xiaojie Lin, Yulin Ren. Dynamics of solitary waves and periodic waves for a generalized KP-MEW-Burgers equation with damping. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1987-2003. doi: 10.3934/cpaa.2021118 |
[5] |
Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391 |
[6] |
Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113 |
[7] |
Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009 |
[8] |
Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391 |
[9] |
Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683 |
[10] |
Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure and Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012 |
[11] |
Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 |
[14] |
Pengchao Lai, Qi Li. Asymptotic behavior for the solutions to a bistable-bistable reaction diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3313-3323. doi: 10.3934/dcdsb.2021186 |
[15] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[16] |
Giovana Alves, Fábio Natali. Periodic waves for the cubic-quintic nonlinear Schrodinger equation: Existence and orbital stability. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022101 |
[17] |
Guenbo Hwang, Byungsoo Moon. Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28 (1) : 15-25. doi: 10.3934/era.2020002 |
[18] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[19] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056 |
[20] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]