December  2013, 6(4): 989-1009. doi: 10.3934/krm.2013.6.989

Remarks on the full dispersion Kadomtsev-Petviashvli equation

1. 

DMA, Ecole Normale Supérieure et CNRS UMR 8553, 45 rue d'Ulm, 75005 Paris

2. 

Laboratoire de Mathématiques, UMR 8628, Université Paris-Sud et CNRS, 91405 Orsay, France

Received  September 2013 Revised  September 2013 Published  November 2013

We consider in this paper the Full Dispersion Kadomtsev-Petviashvili Equation (FDKP) introduced in [19] in order to overcome some shortcomings of the classical KP equation. We investigate its mathematical properties, emphasizing the differences with the Kadomtsev-Petviashvili equation and their relevance to the approximation of water waves. We also present some numerical simulations.
Citation: David Lannes, Jean-Claude Saut. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinetic and Related Models, 2013, 6 (4) : 989-1009. doi: 10.3934/krm.2013.6.989
References:
[1]

J. Albert, J. L. Bona and J.-C.Saut, Model equations for waves in stratified fluids, Proc. Royal Soc. London A, 453 (1997), 1233-1260. doi: 10.1098/rspa.1997.0068.

[2]

D. Alterman and J. Rauch, The linear diffractive pulse equation, Cathleen Morawetz: A great mathematician, Methods Appl. Anal., 7 (2000), 263-274.

[3]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3d water-waves and asymptotics, Invent. math., 171 (2008), 485-541. doi: 10.1007/s00222-007-0088-4.

[4]

W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems, Comm. Partial Differential Equations, 27 (2002), 979-1020. doi: 10.1081/PDE-120004892.

[5]

J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves, Arch. Ration. Mech. Anal., 178 (2005), 373-410. doi: 10.1007/s00205-005-0378-1.

[6]

A. de Bouard and J.-C. Saut, Solitary waves of generalized KP equations, Annales IHP Analyse non Linéaire, 14 (1997), 211-236. doi: 10.1016/S0294-1449(97)80145-X.

[7]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341. doi: 10.1007/BF01896259.

[8]

A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model, Nonlinearity, 23 (2010), 2835-2847. doi: 10.1088/0951-7715/23/11/006.

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586.

[10]

T. Colin and D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics, Duke Math. J., 107 (2001), 351-419. doi: 10.1215/S0012-7094-01-10725-4.

[11]

M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation, Diff. Int. Equations, 22 (2009), 1193-1210.

[12]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type, Nonlinearity, 25 (2012), 2903-2936. doi: 10.1088/0951-7715/25/10/2903.

[13]

R. L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of $(-\Delta)^s Q+Q-Q^{\alpha +1}=0$ in $\mathbbR$, arXiv:1009.4042, 2010.

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct. Analysis, 254 (2008), 1642-1660. doi: 10.1016/j.jfa.2007.12.010.

[15]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (1970), 539-541.

[16]

C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations, J. Nonlinear Science, 22 (2012), 763-811. doi: 10.1007/s00332-012-9127-4.

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of the Burgers equation,, in preparation., (). 

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation, J. Nonl. Sci., 17 (2007), 429-470. doi: 10.1007/s00332-007-9001-y.

[19]

D. Lannes, The Water Waves Problem: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, Volume 188, American Mathematical Society, Providence Rhode Island, 2013.

[20]

D. Lannes, Consistency of the KP approximation, Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Syst., (2003) Suppl. 517-525.

[21]

D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19 (2006), 2853-2875. doi: 10.1088/0951-7715/19/12/007.

[22]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, arXiv:1302.7146v1 [math.AP] 28 Feb 2013.

[23]

S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 63 (1977), 205-206. doi: 10.1016/0375-9601(77)90875-1.

[24]

M. Ming, P. Zhang and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves, SIAM J. Math. Anal., 44 (2012), 2920-2948. doi: 10.1137/11084220X.

[25]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations, J. Diff. Eq., 152 (1999), 30-74. doi: 10.1006/jdeq.1998.3522.

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations, SIAM J. Math. Anal., 39 (2007), 627-641. doi: 10.1137/060654256.

[27]

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, Translated from the Russian manuscript by Boris Gommerstadt. Translations of Mathematical Monographs, 133. American Mathematical Society, Providence, RI, 1994.

[28]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026. doi: 10.1512/iumj.1993.42.42047.

[29]

H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation, IMRN, 8 (2001), 77-114. doi: 10.1155/S1073792801000058.

[30]

S. Ukaï, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 193-209.

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Commun. Partial Diff. Equ,. 12 (1987), 1133-1173. doi: 10.1080/03605308708820522.

[32]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576.

[33]

G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299 (1967), 6-25.

[34]

G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

show all references

References:
[1]

J. Albert, J. L. Bona and J.-C.Saut, Model equations for waves in stratified fluids, Proc. Royal Soc. London A, 453 (1997), 1233-1260. doi: 10.1098/rspa.1997.0068.

[2]

D. Alterman and J. Rauch, The linear diffractive pulse equation, Cathleen Morawetz: A great mathematician, Methods Appl. Anal., 7 (2000), 263-274.

[3]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3d water-waves and asymptotics, Invent. math., 171 (2008), 485-541. doi: 10.1007/s00222-007-0088-4.

[4]

W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems, Comm. Partial Differential Equations, 27 (2002), 979-1020. doi: 10.1081/PDE-120004892.

[5]

J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves, Arch. Ration. Mech. Anal., 178 (2005), 373-410. doi: 10.1007/s00205-005-0378-1.

[6]

A. de Bouard and J.-C. Saut, Solitary waves of generalized KP equations, Annales IHP Analyse non Linéaire, 14 (1997), 211-236. doi: 10.1016/S0294-1449(97)80145-X.

[7]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341. doi: 10.1007/BF01896259.

[8]

A. Castro, D. Córdoba and F. Gancedo, Singularity formation in a surface wave model, Nonlinearity, 23 (2010), 2835-2847. doi: 10.1088/0951-7715/23/11/006.

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586.

[10]

T. Colin and D. Lannes, Long-wave short-wave resonance for nonlinear geometric optics, Duke Math. J., 107 (2001), 351-419. doi: 10.1215/S0012-7094-01-10725-4.

[11]

M. Ehrnström and H. Kalish, Traveling waves for the Whitham equation, Diff. Int. Equations, 22 (2009), 1193-1210.

[12]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type, Nonlinearity, 25 (2012), 2903-2936. doi: 10.1088/0951-7715/25/10/2903.

[13]

R. L. Frank and E. Lenzmann, On the uniqueness and nondegeneracy of ground states of $(-\Delta)^s Q+Q-Q^{\alpha +1}=0$ in $\mathbbR$, arXiv:1009.4042, 2010.

[14]

Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct. Analysis, 254 (2008), 1642-1660. doi: 10.1016/j.jfa.2007.12.010.

[15]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (1970), 539-541.

[16]

C. Klein and J.-C. Saut, Numerical study of blow-up and stability of solutions to generalized Kadomtsev-Petviashvili equations, J. Nonlinear Science, 22 (2012), 763-811. doi: 10.1007/s00332-012-9127-4.

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of the Burgers equation,, in preparation., (). 

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation, J. Nonl. Sci., 17 (2007), 429-470. doi: 10.1007/s00332-007-9001-y.

[19]

D. Lannes, The Water Waves Problem: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, Volume 188, American Mathematical Society, Providence Rhode Island, 2013.

[20]

D. Lannes, Consistency of the KP approximation, Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Cont. Dyn. Syst., (2003) Suppl. 517-525.

[21]

D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19 (2006), 2853-2875. doi: 10.1088/0951-7715/19/12/007.

[22]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, arXiv:1302.7146v1 [math.AP] 28 Feb 2013.

[23]

S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 63 (1977), 205-206. doi: 10.1016/0375-9601(77)90875-1.

[24]

M. Ming, P. Zhang and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves, SIAM J. Math. Anal., 44 (2012), 2920-2948. doi: 10.1137/11084220X.

[25]

L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations, J. Diff. Eq., 152 (1999), 30-74. doi: 10.1006/jdeq.1998.3522.

[26]

L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP type equations, SIAM J. Math. Anal., 39 (2007), 627-641. doi: 10.1137/060654256.

[27]

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, Translated from the Russian manuscript by Boris Gommerstadt. Translations of Mathematical Monographs, 133. American Mathematical Society, Providence, RI, 1994.

[28]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026. doi: 10.1512/iumj.1993.42.42047.

[29]

H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation, IMRN, 8 (2001), 77-114. doi: 10.1155/S1073792801000058.

[30]

S. Ukaï, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 193-209.

[31]

M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Commun. Partial Diff. Equ,. 12 (1987), 1133-1173. doi: 10.1080/03605308708820522.

[32]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567-576.

[33]

G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299 (1967), 6-25.

[34]

G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

[1]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[2]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[3]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[4]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[5]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[6]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[7]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[8]

Zengji Du, Xiaojie Lin, Yulin Ren. Dynamics of solitary waves and periodic waves for a generalized KP-MEW-Burgers equation with damping. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1987-2003. doi: 10.3934/cpaa.2021118

[9]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic and Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[10]

Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155

[11]

Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547

[12]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[13]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[14]

Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068

[15]

Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177

[16]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6069-6090. doi: 10.3934/dcdsb.2021003

[17]

Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[18]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[19]

Jorge Morales Paredes, Félix Humberto Soriano Méndez. On the Cauchy problems associated to a ZK-KP-type family equations with a transversal fractional dispersion. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2257-5593. doi: 10.3934/dcds.2021190

[20]

Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]