- Previous Article
- KRM Home
- This Issue
-
Next Article
Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation
Blowup of smooth solutions to the full compressible MHD system with compact density
1. | School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan |
2. | School of Mathematics and Information Science, Henan polytechnic University, Jiaozuo 454000, Henan, China |
References:
[1] |
D.-F. Bian and B.-L. Guo, Blow-up of smooth solutions to the isentropic compressible MHD equations, to appear in Applicable Analysis, 2013.
doi: 10.1080/00036811.2013.766324. |
[2] |
Y. Cho and B. J. Jin, Blow-up of viscous heat-conducting compressible flows, J. Math. Anal. Appl., 320 (2006), 819-826.
doi: 10.1016/j.jmaa.2005.08.005. |
[3] |
D. Du, J. Li and K. Zhang, Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids, Commun. Math. Sci., 11 (2013), 541-546.
doi: 10.4310/CMS.2013.v11.n2.a11. |
[4] |
O. Rozanova, Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy, in Hyperbolic Problems: Theory, Numerics and Applications (eds. E. Tadmor, J.-G. Liu and A. E. Tzavaras), Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc., Providence, RI, 2009, 911-917.
doi: 10.1090/psapm/067.2/2605286. |
[5] |
O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 1762-1774.
doi: 10.1016/j.jde.2008.07.007. |
[6] |
Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. |
[7] |
Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Commun. Math. Sci., 321 (2013), 529-541.
doi: 10.1007/s00220-012-1610-0. |
show all references
References:
[1] |
D.-F. Bian and B.-L. Guo, Blow-up of smooth solutions to the isentropic compressible MHD equations, to appear in Applicable Analysis, 2013.
doi: 10.1080/00036811.2013.766324. |
[2] |
Y. Cho and B. J. Jin, Blow-up of viscous heat-conducting compressible flows, J. Math. Anal. Appl., 320 (2006), 819-826.
doi: 10.1016/j.jmaa.2005.08.005. |
[3] |
D. Du, J. Li and K. Zhang, Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids, Commun. Math. Sci., 11 (2013), 541-546.
doi: 10.4310/CMS.2013.v11.n2.a11. |
[4] |
O. Rozanova, Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy, in Hyperbolic Problems: Theory, Numerics and Applications (eds. E. Tadmor, J.-G. Liu and A. E. Tzavaras), Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc., Providence, RI, 2009, 911-917.
doi: 10.1090/psapm/067.2/2605286. |
[5] |
O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 1762-1774.
doi: 10.1016/j.jde.2008.07.007. |
[6] |
Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. |
[7] |
Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Commun. Math. Sci., 321 (2013), 529-541.
doi: 10.1007/s00220-012-1610-0. |
[1] |
Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084 |
[2] |
Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure and Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161 |
[3] |
Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283 |
[4] |
Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211 |
[5] |
Paola Trebeschi. On the slightly compressible MHD system in the half-plane. Communications on Pure and Applied Analysis, 2004, 3 (1) : 97-113. doi: 10.3934/cpaa.2004.3.97 |
[6] |
Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841 |
[7] |
Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068 |
[8] |
Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240 |
[9] |
Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic and Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785 |
[10] |
Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferro-magnetic chain. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 729-740. doi: 10.3934/dcds.1999.5.729 |
[11] |
Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237 |
[12] |
Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021307 |
[13] |
Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583 |
[14] |
Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic and Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002 |
[15] |
Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005 |
[16] |
Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic and Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002 |
[17] |
Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure and Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959 |
[18] |
Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks and Heterogeneous Media, 2016, 11 (2) : 313-330. doi: 10.3934/nhm.2016.11.313 |
[19] |
Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110 |
[20] |
Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]