Citation: |
[1] |
G. Arfken, Mathematical Methods for Physicists, 3rd edition, Academic Press, Orlando, 1985. |
[2] |
J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., 61 (1990), 203-234.doi: 10.1007/BF01013961. |
[3] |
M. Bodnar and J. J. L. Velázquez, An integro-differential equation arising as a limit of individual cell-based models, J. Diff. Eqs., 222 (2006), 341-380.doi: 10.1016/j.jde.2005.07.025. |
[4] |
J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.doi: 10.1126/science.1125142. |
[5] |
J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kin. Rel. Mod., 2 (2009), 363-378.doi: 10.3934/krm.2009.2.363. |
[6] |
C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys., 81 (2009), 591-646.doi: 10.1103/RevModPhys.81.591. |
[7] |
P. Clifford and A. Sudbury, A model for spatial conflict, Biometrika, 60 (1973), 581-588.doi: 10.1093/biomet/60.3.581. |
[8] |
M. Conti, B. Meerson, A. Peleg and P. V. Sasorov, Phase ordering with a global conservation law: Ostwald ripening and coalescence, Phys. Rev. E, 65 (2002), 046117.doi: 10.1103/PhysRevE.65.046117. |
[9] |
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.doi: 10.1007/BF02124750. |
[10] |
A. Czirók, A.-L. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension, Phys. Rev. Lett., 82 (1999), 209-212. |
[11] |
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), 104302.doi: 10.1103/PhysRevLett.96.104302. |
[12] |
G. Deffuant, D. Neu, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst., 3 (2000), 87-98.doi: 10.1142/S0219525900000078. |
[13] |
C. Escudero, F. Macià and J. J. L. Velázquez, Two-species coagulation approach to consensus by group level interactions, Phys. Rev. E, 82 (2010), 016113.doi: 10.1103/PhysRevE.82.016113. |
[14] |
C. Escudero, C. A. Yates, J. Buhl, I. D. Couzin, R. Erban, I. G. Kevrekidis and P. K. Maini, Ergodic directional switching in mobile insect groups, Phys. Rev. E, 82 (2010), 011926.doi: 10.1103/PhysRevE.82.011926. |
[15] |
O. Al Hammal, H. Chaté, I. Dornic and M. A. Muñoz, Langevin description of critical phenomena with two symmetric absorbing states, Phys. Rev. Lett., 94 (2005), 230601. |
[16] |
E. Hernández-García and C. López, Clustering, advection and patterns in a model of population dynamics, Phys. Rev. E, 70 (2004), 016216. |
[17] |
R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., 3 (1975), 573-739.doi: 10.1214/aop/1176996306. |
[18] |
C. Huepe and M. Aldana, Intermittency and clustering in a system of self-driven particles, Phys. Rev. Lett., 92 (2004), 168701.doi: 10.1103/PhysRevLett.92.168701. |
[19] |
S. Janson, D. E. Knuth, T. Luczak and B. Pittel, The birth of the giant component, Rand. Struct. Alg., 4 (1993), 233-358.doi: 10.1002/rsa.3240040303. |
[20] |
M. Kreer and O. Penrose, Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Stat. Phys., 75 (1994), 389-407.doi: 10.1007/BF02186868. |
[21] |
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.doi: 10.1016/0022-3697(61)90054-3. |
[22] |
T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985.doi: 10.1007/978-1-4613-8542-4. |
[23] |
J. B. McLeod, On the scalar transport equation, Proc. London Math. Soc., 14 (1964), 445-458. |
[24] |
G. Menon and R. L. Pego, Approach to self-similarity in Smoluchowski's coagulation equations, Commun. Pure Appl. Math., 57 (2004), 1197-1232.doi: 10.1002/cpa.3048. |
[25] |
H. S. Niwa, School size statistics of fish, J. Theor. Biol., 195 (1998), 351-361.doi: 10.1006/jtbi.1998.0801. |
[26] |
F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods, Phys. Rev. E, 74 (2006), 030904(R).doi: 10.1103/PhysRevE.74.030904. |
[27] |
M. Pineda, R. Toral and E. Hernández-García, Noisy continuous-opinion dynamics, J. Stat. Mech., (2009), P08001.doi: 10.1088/1742-5468/2009/08/P08001. |
[28] |
J. Seinfeld, Atmospheric Chemistry and Physics of Air Polution, Wiley, New York, 1986. |
[29] |
J. Silk and S. D. White, The development of structure in the expanding universe, Astrophys. J., 223 (1978), L59-L62.doi: 10.1086/182728. |
[30] |
T. Sintes, R. Toral and A. Chakrabarti, Reversible aggregation in self-associating polymer systems, Phys. Rev. E, 50 (1994), 2967-2976.doi: 10.1103/PhysRevE.50.2967. |
[31] |
R. Toral and J. Marro, Cluster kinetics in the lattice gas model: The Becker-Doring type of equations, J. Phys. C: Solid State Phys., 20 (1987), 2491-2500.doi: 10.1088/0022-3719/20/17/004. |
[32] |
R. Toral and C. J. Tessone, Finite size effects in the dynamics of opinion formation, Commun. Comput. Phys., 2 (2007), 177-195. |
[33] |
F. Vázquez and C. López, Systems with two symmetric absorbing states: relating the microscopic dynamics with the macroscopic behavior, Phys. Rev. E, 78 (2008), 061127. |
[34] |
C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini and D. J. T. Sumpter, Inherent noise can facilitate coherence in collective swarm motion, Proc. Nat. Acad. Sci. USA, 106 (2009), 5464-5469.doi: 10.1073/pnas.0811195106. |
[35] |
R. M. Ziff, Kinetics of polymerization, J. Stat. Phys., 23 (1980), 241-263.doi: 10.1007/BF01012594. |