\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Kinetic theory and numerical simulations of two-species coagulation

Abstract Related Papers Cited by
  • In this work we study the stochastic process of two-species coagulation. This process consists in the aggregation dynamics taking place in a ring. Particles and clusters of particles are set in this ring and they can move either clockwise or counterclockwise. They have a probability to aggregate forming larger clusters when they collide with another particle or cluster. We study the stochastic process both analytically and numerically. Analytically, we derive a kinetic theory which approximately describes the process dynamics. One of our strongest assumptions in this respect is the so called well--stirred limit, that allows neglecting the appearance of spatial coordinates in the theory, so this becomes effectively reduced to a zeroth dimensional model. We determine the long time behavior of such a model, making emphasis in one special case in which it displays self-similar solutions. In particular these calculations answer the question of how the system gets ordered, with all particles and clusters moving in the same direction, in the long time. We compare our analytical results with direct numerical simulations of the stochastic process and both corroborate its predictions and check its limitations. In particular, we numerically confirm the ordering dynamics predicted by the kinetic theory and explore properties of the realizations of the stochastic process which are not accessible to our theoretical approach.
    Mathematics Subject Classification: Primary: 35C20, 35Q20; Secondary: 82C22, 82C80.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Arfken, Mathematical Methods for Physicists, 3rd edition, Academic Press, Orlando, 1985.

    [2]

    J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., 61 (1990), 203-234.doi: 10.1007/BF01013961.

    [3]

    M. Bodnar and J. J. L. Velázquez, An integro-differential equation arising as a limit of individual cell-based models, J. Diff. Eqs., 222 (2006), 341-380.doi: 10.1016/j.jde.2005.07.025.

    [4]

    J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.doi: 10.1126/science.1125142.

    [5]

    J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kin. Rel. Mod., 2 (2009), 363-378.doi: 10.3934/krm.2009.2.363.

    [6]

    C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys., 81 (2009), 591-646.doi: 10.1103/RevModPhys.81.591.

    [7]

    P. Clifford and A. Sudbury, A model for spatial conflict, Biometrika, 60 (1973), 581-588.doi: 10.1093/biomet/60.3.581.

    [8]

    M. Conti, B. Meerson, A. Peleg and P. V. Sasorov, Phase ordering with a global conservation law: Ostwald ripening and coalescence, Phys. Rev. E, 65 (2002), 046117.doi: 10.1103/PhysRevE.65.046117.

    [9]

    R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.doi: 10.1007/BF02124750.

    [10]

    A. Czirók, A.-L. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension, Phys. Rev. Lett., 82 (1999), 209-212.

    [11]

    M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), 104302.doi: 10.1103/PhysRevLett.96.104302.

    [12]

    G. Deffuant, D. Neu, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst., 3 (2000), 87-98.doi: 10.1142/S0219525900000078.

    [13]

    C. Escudero, F. Macià and J. J. L. Velázquez, Two-species coagulation approach to consensus by group level interactions, Phys. Rev. E, 82 (2010), 016113.doi: 10.1103/PhysRevE.82.016113.

    [14]

    C. Escudero, C. A. Yates, J. Buhl, I. D. Couzin, R. Erban, I. G. Kevrekidis and P. K. Maini, Ergodic directional switching in mobile insect groups, Phys. Rev. E, 82 (2010), 011926.doi: 10.1103/PhysRevE.82.011926.

    [15]

    O. Al Hammal, H. Chaté, I. Dornic and M. A. Muñoz, Langevin description of critical phenomena with two symmetric absorbing states, Phys. Rev. Lett., 94 (2005), 230601.

    [16]

    E. Hernández-García and C. López, Clustering, advection and patterns in a model of population dynamics, Phys. Rev. E, 70 (2004), 016216.

    [17]

    R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., 3 (1975), 573-739.doi: 10.1214/aop/1176996306.

    [18]

    C. Huepe and M. Aldana, Intermittency and clustering in a system of self-driven particles, Phys. Rev. Lett., 92 (2004), 168701.doi: 10.1103/PhysRevLett.92.168701.

    [19]

    S. Janson, D. E. Knuth, T. Luczak and B. Pittel, The birth of the giant component, Rand. Struct. Alg., 4 (1993), 233-358.doi: 10.1002/rsa.3240040303.

    [20]

    M. Kreer and O. Penrose, Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Stat. Phys., 75 (1994), 389-407.doi: 10.1007/BF02186868.

    [21]

    I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50.doi: 10.1016/0022-3697(61)90054-3.

    [22]

    T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985.doi: 10.1007/978-1-4613-8542-4.

    [23]

    J. B. McLeod, On the scalar transport equation, Proc. London Math. Soc., 14 (1964), 445-458.

    [24]

    G. Menon and R. L. Pego, Approach to self-similarity in Smoluchowski's coagulation equations, Commun. Pure Appl. Math., 57 (2004), 1197-1232.doi: 10.1002/cpa.3048.

    [25]

    H. S. Niwa, School size statistics of fish, J. Theor. Biol., 195 (1998), 351-361.doi: 10.1006/jtbi.1998.0801.

    [26]

    F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods, Phys. Rev. E, 74 (2006), 030904(R).doi: 10.1103/PhysRevE.74.030904.

    [27]

    M. Pineda, R. Toral and E. Hernández-García, Noisy continuous-opinion dynamics, J. Stat. Mech., (2009), P08001.doi: 10.1088/1742-5468/2009/08/P08001.

    [28]

    J. Seinfeld, Atmospheric Chemistry and Physics of Air Polution, Wiley, New York, 1986.

    [29]

    J. Silk and S. D. White, The development of structure in the expanding universe, Astrophys. J., 223 (1978), L59-L62.doi: 10.1086/182728.

    [30]

    T. Sintes, R. Toral and A. Chakrabarti, Reversible aggregation in self-associating polymer systems, Phys. Rev. E, 50 (1994), 2967-2976.doi: 10.1103/PhysRevE.50.2967.

    [31]

    R. Toral and J. Marro, Cluster kinetics in the lattice gas model: The Becker-Doring type of equations, J. Phys. C: Solid State Phys., 20 (1987), 2491-2500.doi: 10.1088/0022-3719/20/17/004.

    [32]

    R. Toral and C. J. Tessone, Finite size effects in the dynamics of opinion formation, Commun. Comput. Phys., 2 (2007), 177-195.

    [33]

    F. Vázquez and C. López, Systems with two symmetric absorbing states: relating the microscopic dynamics with the macroscopic behavior, Phys. Rev. E, 78 (2008), 061127.

    [34]

    C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini and D. J. T. Sumpter, Inherent noise can facilitate coherence in collective swarm motion, Proc. Nat. Acad. Sci. USA, 106 (2009), 5464-5469.doi: 10.1073/pnas.0811195106.

    [35]

    R. M. Ziff, Kinetics of polymerization, J. Stat. Phys., 23 (1980), 241-263.doi: 10.1007/BF01012594.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return